7 resultados para Hunter, C. Roy

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparative phylogeography seeks for commonalities in the spatial demographic history of sympatric organisms to characterize the mechanisms that shaped such patterns. The unveiling of incongruent phylogeographic patterns in co-occurring species, on the other hand, may hint to overlooked differences in their life histories or microhabitat preferences. The woodlouse-hunter spiders of the genus Dysdera have undergone a major diversi cation on the Canary Islands. The species pair Dysdera alegranzaensis and Dysdera nesiotes are endemic to the island of Lanzarote and nearby islets, where they co-occur at most of their known localities. The two species stand in sharp contrast to other sympatric endemic Dysdera in showing no evidence of somatic (non-genitalic) differentiation. Phylogenetic and population genetic analyses of mitochondrial cox1 sequences from an exhaustive sample of D. alegranzaensis and D. nesiotes specimens, and additional mitochondrial (16S, L1, nad1) and nuclear genes (28S, H3) were analysed to reveal their phylogeographic patterns and clarify their phylogenetic relationships. Relaxed molecular clock models using ve calibration points were further used to estimate divergence times between species and populations. Striking differences in phylogeography and population structure between the two species were observed. Dysdera nesiotes displayed a metapopulation-like structure, while D. alegranzaensis was characterized by a weaker geographical structure but greater genetic divergences among its main haplotype lineages, suggesting more complex population dynamics. Our study con rms that co-distributed sibling species may exhibit contrasting phylogeographic patterns in the absence of somatic differentiation. Further ecological studies, however, will be necessary to clarify whether the contrasting phylogeographies may hint at an overlooked niche partitioning between the two species. In addition, further comparisons with available phylogeographic data of other eastern Canarian Dysdera endemics con rm the key role of lava ows in structuring local populations in oceanic islands and identify localities that acted as refugia during volcanic eruptions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparative phylogeography seeks for commonalities in the spatial demographic history of sympatric organisms to characterize the mechanisms that shaped such patterns. The unveiling of incongruent phylogeographic patterns in co-occurring species, on the other hand, may hint to overlooked differences in their life histories or microhabitat preferences. The woodlouse-hunter spiders of the genus Dysdera have undergone a major diversi cation on the Canary Islands. The species pair Dysdera alegranzaensis and Dysdera nesiotes are endemic to the island of Lanzarote and nearby islets, where they co-occur at most of their known localities. The two species stand in sharp contrast to other sympatric endemic Dysdera in showing no evidence of somatic (non-genitalic) differentiation. Phylogenetic and population genetic analyses of mitochondrial cox1 sequences from an exhaustive sample of D. alegranzaensis and D. nesiotes specimens, and additional mitochondrial (16S, L1, nad1) and nuclear genes (28S, H3) were analysed to reveal their phylogeographic patterns and clarify their phylogenetic relationships. Relaxed molecular clock models using ve calibration points were further used to estimate divergence times between species and populations. Striking differences in phylogeography and population structure between the two species were observed. Dysdera nesiotes displayed a metapopulation-like structure, while D. alegranzaensis was characterized by a weaker geographical structure but greater genetic divergences among its main haplotype lineages, suggesting more complex population dynamics. Our study con rms that co-distributed sibling species may exhibit contrasting phylogeographic patterns in the absence of somatic differentiation. Further ecological studies, however, will be necessary to clarify whether the contrasting phylogeographies may hint at an overlooked niche partitioning between the two species. In addition, further comparisons with available phylogeographic data of other eastern Canarian Dysdera endemics con rm the key role of lava ows in structuring local populations in oceanic islands and identify localities that acted as refugia during volcanic eruptions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.