2 resultados para Host-parasitoid Systems

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Comparative ultrastructural study of the intercellular connections between parasite and host cells in two algal parasitic systems, Gelidiocolax christianae Feldmann and Feldmann/Ge/iV/ium spathulatum (Kutz.) Bornet and Gelidiocolax deformans Seoane Camba/Gelidium sesquipedale (Clem.) Thur, shows quantitative and structural differences. The number of free conjunctor cells (before fusión with the adjacent host cells) differs between the two parasitic systems and is inversely related to the number of complex pit connections. The fibrillar cell wall structure of the conjunctor cells and the lamellar structure of the complex pit plugs in the two systems are also different A hypothesis concerning the different activity of the conjuntor cell wall in the two parasitic systems, related with the different structural appearance, is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C (13C/12C, δ13C) and N (15N/14N, δ15N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). δ13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in δ15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.