1 resultado para Honey of bees
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Filtro por publicador
- Aberdeen University (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (4)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (43)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (99)
- Biodiversity Heritage Library, United States (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (52)
- Brock University, Canada (12)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CentAUR: Central Archive University of Reading - UK (53)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Harvard University (2)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico de Viseu (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (11)
- National Center for Biotechnology Information - NCBI (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (50)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (259)
- Research Open Access Repository of the University of East London. (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (85)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (4)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (36)
- Université de Montréal, Canada (1)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (138)
- University of Queensland eSpace - Australia (38)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
The central message of this paper is that nobody should be using the samplecovariance matrix for the purpose of portfolio optimization. It containsestimation error of the kind most likely to perturb a mean-varianceoptimizer. In its place, we suggest using the matrix obtained from thesample covariance matrix through a transformation called shrinkage. Thistends to pull the most extreme coefficients towards more central values,thereby systematically reducing estimation error where it matters most.Statistically, the challenge is to know the optimal shrinkage intensity,and we give the formula for that. Without changing any other step in theportfolio optimization process, we show on actual stock market data thatshrinkage reduces tracking error relative to a benchmark index, andsubstantially increases the realized information ratio of the activeportfolio manager.