16 resultados para Hole-board

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We test hypotheses on the dual role of boards of directors for a sample of large international commercial banks. We find an inverted U shaped relation between bank performance and board size that justifies a large board and imposes an efficient limit to the board’s size; a positive relation between the proportion of non-executive directors and performance; and a proactive role in board meetings. Our results show that bank boards’ composition and functioning are related to directors’ incentives to monitor and advise management. All these relations hold after we control for bank business, institutional differences, size, market power in the banking industry, bank ownership and investors’ legal protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mechatronics Research Centre (MRC) owns a small scale robot manipulator called aMini-Mover 5. This robot arm is a microprocessor-controlled, six-jointed mechanical armdesigned to provide an unusual combination of dexterity and low cost.The Mini-Mover-5 is operated by a number of stepper motors and is controlled by a PCparallel port via a discrete logic board. The manipulator also has an impoverished array ofsensors.This project requires that a new control board and suitable software be designed to allow themanipulator to be controlled from a PC. The control board will also provide a mechanism forthe values measured using some sensors to be returned to the PC.On this project I will consider: stepper motor control requirements, sensor technologies,power requirements, USB protocols, USB hardware and software development and controlrequirements (e.g. sample rates).In this report we will have a look at robots history and background, as well as we willconcentrate how stepper motors and parallel port work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge transfer properties of DNA depend strongly on the π stack conformation. In the present paper, we identify conformations of homogeneous poly-{G}-poly-{C} stacks that should exhibit high charge mobility. Two different computational approaches were applied. First, we calculated the electronic coupling squared, V2, between adjacent base pairs for all 1 ps snapshots extracted from 15 ns molecular dynamics trajectory of the duplex G15. The average value of the coupling squared 〈 V2 〉 is found to be 0.0065 eV2. Then we analyze the base-pair and step parameters of the configurations in which V2 is at least an order of magnitude larger than 〈 V2 〉. To obtain more consistent data, ∼65 000 configurations of the (G:C)2 stack were built using systematic screening of the step parameters shift, slide, and twist. We show that undertwisted structures (twist<20°) are of special interest, because the π stack conformations with strong electronic couplings are found for a wide range of slide and shift. Although effective hole transfer can also occur in configurations with twist=30° and 35°, large mutual displacements of neighboring base pairs are required for that. Overtwisted conformation (twist38°) seems to be of limited interest in the context of effective hole transfer. The results may be helpful in the search for DNA based elements for nanoelectronics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)n sequences are localized on individual guanines

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron¿hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron¿hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron¿hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent magnetotransport experiments of holes in InGaAs quantum dots [D. Reuter, P. Kailuweit, A. D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A. Lorke, and J. C. Maan, Phys. Rev. Lett. 94, 026808 (2005)] are interpreted by employing a multiband k¿p Hamiltonian, which considers the interaction between heavy hole and light hole subbands explicitly. No need of invoking an incomplete energy shell filling is required within this model. The crucial role we ascribe to the heavy hole-light hole interaction is further supported by one-band local-spin-density functional calculations, which show that Coulomb interactions do not induce any incomplete hole shell filling and therefore cannot account for the experimental magnetic field dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ty that low-energy effective field theory could be sufficient to understand the microscopic degrees of freedom underlying black hole entropy. We propose a qualitative physical picture in which black hole entropy refers to a space of quasicoherent states of infalling matter, together with its gravitational field. We stress that this scenario might provide a low-energy explanation of both the black hole entropy and the information puzzle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Powell Basin is a small oceanic basin located at the NE end of the Antarctic Peninsula developed during the Early Miocene and mostly surrounded by the continental crusts of the South Orkney Microcontinent, South Scotia Ridge and Antarctic Peninsula margins. Gravity data from the SCAN 97 cruise obtained with the R/V Hespérides and data from the Global Gravity Grid and Sea Floor Topography (GGSFT) database (Sandwell and Smith, 1997) are used to determine the 3D geometry of the crustal-mantle interface (CMI) by numerical inversion methods. Water layer contribution and sedimentary effects were eliminated from the Free Air anomaly to obtain the total anomaly. Sedimentary effects were obtained from the analysis of existing and new SCAN 97 multichannel seismic profiles (MCS). The regional anomaly was obtained after spectral and filtering processes. The smooth 3D geometry of the crustal mantle interface obtained after inversion of the regional anomaly shows an increase in the thickness of the crust towards the continental margins and a NW-SE oriented axis of symmetry coinciding with the position of an older oceanic spreading axis. This interface shows a moderate uplift towards the western part and depicts two main uplifts to the northern and eastern sectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquest treball final de carrera es basa en la creació d'una borsa de treball on-line, distribuïda i multi-dispositiu. Ha estat creada a partir de noves tecnologies com Play Framework i Twiter Bootstrap, utilitzant els llenguatges Java i Scala, usant marcatge HTML5 i desplegada en un servidor de cloud computing anomenat Heroku.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the ~80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (also known as HD 215227), although that was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of the Be star. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), reveals a black hole of 3.8 to 6.9 solar masses orbiting MWC 656, the candidate counterpart of the gamma-ray source AGL J2241+4454. The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 x 10-7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect by conventional X-ray surveys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a model where the quantum dynamics of black hole evaporation is determined by imposing a boundary on the apparent horizon with suitable boundary conditions. An unconventional scenario for the evolution emerges: only an insignificant fraction of energy of order (mG)-1 is radiated out; the outgoing wave carries a very small part of the quantum-mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.