12 resultados para Heinrichs, Erik

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde 1980 hasta 2010, la población penitenciaria no dejó de crecer. Sin embargo, desde 2010 esta tasa se está reduciendo. En este trabajo se trata de buscar una serie de explicaciones para este aumento, y para la posterior reducción. Se pone especialatención en la entrada en vigor de la Ley Orgánica 5/2010, que supuso una extensa reforma del Código Penal. Con esta Ley Orgánica, se introdujo la posibilidad de reducir en un grado ciertas conductas contra la salud pública, en forma de subtipo atenuado.Esto puede haber supuesto un efecto considerable sobre la reducción de las tasas de encarcelamiento. Para estudiar el efecto de este nuevo subtipo, se realiza una pequeña investigación cuantitativa sobre una muestra de sentencias por delitos contra la saludpública. Después, se muestran los resultados y se proponen nuevas líneas de investigación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Pharmacovigilance methods have advanced greatly during the last decades, making post-market drug assessment an essential drug evaluation component. These methods mainly rely on the use of spontaneous reporting systems and health information databases to collect expertise from huge amounts of real-world reports. The EU-ADR Web Platform was built to further facilitate accessing, monitoring and exploring these data, enabling an in-depth analysis of adverse drug reactions risks.METHODS: The EU-ADR Web Platform exploits the wealth of data collected within a large-scale European initiative, the EU-ADR project. Millions of electronic health records, provided by national health agencies, are mined for specific drug events, which are correlated with literature, protein and pathway data, resulting in a rich drug-event dataset. Next, advanced distributed computing methods are tailored to coordinate the execution of data-mining and statistical analysis tasks. This permits obtaining a ranked drug-event list, removing spurious entries and highlighting relationships with high risk potential.RESULTS: The EU-ADR Web Platform is an open workspace for the integrated analysis of pharmacovigilance datasets. Using this software, researchers can access a variety of tools provided by distinct partners in a single centralized environment. Besides performing standalone drug-event assessments, they can also control the pipeline for an improved batch analysis of custom datasets. Drug-event pairs can be substantiated and statistically analysed within the platform's innovative working environment.CONCLUSIONS: A pioneering workspace that helps in explaining the biological path of adverse drug reactions was developed within the EU-ADR project consortium. This tool, targeted at the pharmacovigilance community, is available online at https://bioinformatics.ua.pt/euadr/. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron–sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron–sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron–sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater ecosystems and their biodiversity are presently seriously threatened by global development and population growth, leading to increases in nutrient inputs and intensification of eutrophication-induced problems in receiving fresh waters, particularly in lakes. Climate change constitutes another threat exacerbating the symptoms of eutrophication and species migration and loss. Unequivocal evidence of climate change impacts is still highly fragmented despite the intensive research, in part due to the variety and uncertainty of climate models and underlying emission scenarios but also due to the different approaches applied to study its effects. We first describe the strengths and weaknesses of the multi-faceted approaches that are presently available for elucidating the effects of climate change in lakes, including space-for-time substitution, time series, experiments, palaeoecology and modelling. Reviewing combined results from studies based on the various approaches, we describe the likely effects of climate changes on biological communities, trophic dynamics and the ecological state of lakes. We further discuss potential mitigation and adaptation measures to counteract the effects of climate change on lakes and, finally, we highlight some of the future challenges that we face to improve our capacity for successful prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assessed the importance of temperature, salinity, and predation for the size structure of zooplankton and provided insight into the future ecological structure and function of shallow lakes in a warmer climate. Artificial plants were introduced in eight comparable coastal shallow brackish lakes located at two contrasting temperatures: cold-temperate and Mediterranean climate region. Zooplankton, fish, and macroinvertebrates were sampled within the plants and at open-water habitats. The fish communities of these brackish lakes were characterized by small-sized individuals, highly associated with submerged plants. Overall, higher densities of small planktivorous fish were recorded in the Mediterranean compared to the cold-temperate region, likely reflecting temperature-related differences as have been observed in freshwater lakes. Our results suggest that fish predation is the major control of zooplankton size structure in brackish lakes, since fish density was related to a decrease in mean body size and density of zooplankton and this was reflected in a unimodal shaped biomass-sizespectrum with dominance of small sizes and low size diversity. Salinity might play a more indirect role by shaping zooplankton communities toward more salt-tolerant species. In a global-warming perspective, these results suggest that changes in the trophic structure of shallow lakes in temperate regions might be expected as a result of the warmer temperatures and the potentially associated increases in salinity. The decrease in the density of largebodied zooplankton might reduce the grazing on phytoplankton and thus the chances of maintaining the clear water state in these ecosystems

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Little is known about the long-term changes in the functioning of schizophrenia patients receiving maintenance therapy with olanzapine long-acting injection (LAI), and whether observed changes differ from those seen with oral olanzapine. METHODS: This study describes changes in the levels of functioning among outpatients with schizophrenia treated with olanzapine-LAI compared with oral olanzapine over 2 years. This was a secondary analysis of data from a multicenter, randomized, open-label, 2-year study comparing the long-term treatment effectiveness of monthly olanzapine-LAI (405 mg/4 weeks; n=264) with daily oral olanzapine (10 mg/day; n=260). Levels of functioning were assessed with the Heinrichs-Carpenter Quality of Life Scale. Functional status was also classified as 'good', 'moderate', or 'poor', using a previous data-driven approach. Changes in functional levels were assessed with McNemar's test and comparisons between olanzapine-LAI and oral olanzapine employed the Student's t-test. RESULTS: Over the 2-year study, the patients treated with olanzapine-LAI improved their level of functioning (per Quality of Life total score) from 64.0-70.8 (P<0.001). Patients on oral olanzapine also increased their level of functioning from 62.1-70.1 (P<0.001). At baseline, 19.2% of the olanzapine-LAI-treated patients had a 'good' level of functioning, which increased to 27.5% (P<0.05). The figures for oral olanzapine were 14.2% and 24.5%, respectively (P<0.001). Results did not significantly differ between olanzapine-LAI and oral olanzapine. CONCLUSION: In this 2-year, open-label, randomized study of olanzapine-LAI, outpatients with schizophrenia maintained or improved their favorable baseline level of functioning over time. Results did not significantly differ between olanzapine-LAI and oral olanzapine.