38 resultados para Hdl Cholesterol
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
There are few clinical data on the combination abacavir/lamivudine plus raltegravir. We compared the outcomes of patients from the SPIRAL trial receiving either abacavir/lamivudine or tenofovir/emtricitabine at baseline who had taken at least one dose of either raltegravir or ritonavir-boosted protease inhibitors. For the purpose of this analysis, treatment failure was defined as virological failure (confirmed HIV-1 RNA ≥50 copies/ml) or discontinuation of abacavir/lamivudine or tenofovir/emtricitabine because of adverse events, consent withdrawal, or lost to follow-up. There were 143 (72.59%) patients with tenofovir/emtricitabine and 54 (27.41%) with abacavir/lamivudine. In the raltegravir group, there were three (11.11%) treatment failures with abacavir/lamivudine and eight (10.96%) with tenofovir/emtricitabine (estimated difference 0.15%; 95% CI -17.90 to 11.6). In the ritonavir-boosted protease inhibitor group, there were four (14.81%) treatment failures with abacavir/lamivudine and 12 (17.14%) with tenofovir/emtricitabine (estimated difference -2.33%; 95% CI -16.10 to 16.70). Triglycerides decreased and HDL cholesterol increased through the study more pronouncedly with abacavir/lamivudine than with tenofovir/emtricitabine and differences in the total-to-HDL cholesterol ratio between both combinations of nucleoside reverse transcriptase inhibitors (NRTIs) tended to be higher in the raltegravir group, although differences at 48 weeks were not significant. While no patient discontinued abacavir/lamivudine due to adverse events, four (2.80%) patients (all in the ritonavir-boosted protease inhibitor group) discontinued tenofovir/emtricitabine because of adverse events (p=0.2744). The results of this analysis do not suggest that outcomes of abacavir/lamivudine are worse than those of tenofovir/emtricitabine when combined with raltegravir in virologically suppressed HIV-infected adults.
Resumo:
Ensuring the accuracy of dietary assessment instruments is paramount for interpreting diet-disease relationships. The present study assessed the relative and construct validity of the 14-point Mediterranean Diet Adherence Screener (MEDAS) used in the Prevencio´n con Dieta Mediterra´nea (PREDIMED) study, a primary prevention nutrition-intervention trial. A validated FFQ and the MEDAS were administered to 7146 participants of the PREDIMED study. The MEDASderived PREDIMED score correlated significantly with the corresponding FFQ PREDIMED score (r = 0.52; intraclass correlation coefficient = 0.51) and in the anticipated directions with the dietary intakes reported on the FFQ. Using Bland Altman"s analysis, the average MEDAS Mediterranean diet score estimate was 105% of the FFQ PREDIMED score estimate. Limits of agreement ranged between 57 and 153%. Multiple linear regression analyses revealed that a higher PREDIMED score related directly (P , 0.001) to HDL-cholesterol (HDL-C) and inversely (P , 0.038) to BMI, waist circumference, TG, the TG:HDL-C ratio, fasting glucose, and the cholesterol:HDL-C ratio. The 10-y estimated coronary artery disease risk decreased as the PREDIMED score increased (P , 0.001). The MEDAS is a valid instrument for rapid estimation of adherence to the Mediterranean diet and may be useful in clinical practice.
Resumo:
Ensuring the accuracy of dietary assessment instruments is paramount for interpreting diet-disease relationships. The present study assessed the relative and construct validity of the 14-point Mediterranean Diet Adherence Screener (MEDAS) used in the Prevencio´n con Dieta Mediterra´nea (PREDIMED) study, a primary prevention nutrition-intervention trial. A validated FFQ and the MEDAS were administered to 7146 participants of the PREDIMED study. The MEDASderived PREDIMED score correlated significantly with the corresponding FFQ PREDIMED score (r = 0.52; intraclass correlation coefficient = 0.51) and in the anticipated directions with the dietary intakes reported on the FFQ. Using Bland Altman"s analysis, the average MEDAS Mediterranean diet score estimate was 105% of the FFQ PREDIMED score estimate. Limits of agreement ranged between 57 and 153%. Multiple linear regression analyses revealed that a higher PREDIMED score related directly (P , 0.001) to HDL-cholesterol (HDL-C) and inversely (P , 0.038) to BMI, waist circumference, TG, the TG:HDL-C ratio, fasting glucose, and the cholesterol:HDL-C ratio. The 10-y estimated coronary artery disease risk decreased as the PREDIMED score increased (P , 0.001). The MEDAS is a valid instrument for rapid estimation of adherence to the Mediterranean diet and may be useful in clinical practice.
Resumo:
Abstract INTRODUCTION: Previous studies have described improvements on lipid parameters when switching from other antiretroviral drugs to tenofovir (TDF) and impairments in lipid profile when discontinuing TDF. [1-3] It is unknown, however, if TDF has an intrinsic lipid-lowering effect or such findings are due to the addition or removal of other offending agents or other reasons. MATERIALS AND METHODS: RESULTS: 46 subjects with a median age of 43 (40-48) years were enrolled in the study: 70% were male, 56% received DRV/r and 44% LPV/r. One subject withdrew the study voluntarily at week 4 and another one interrupted due to diarrhoea at week 24. Treatment with TDF/FTC decreased total, LDL and HDL-cholesterol from 235.9 to 204.9 (p<0.001), 154.7 to 127.6 (p<0.001) and 50.3 to 44.5 mg/dL (p<0.001), respectively. In comparison, total, LDL and HDL-cholesterol levels remained stable during placebo exposure. Week 12 total cholesterol (p<0.001), LDL-cholesterol (p<0.001) and HDL-cholesterol (p=0.011) levels were significantly lower in TDF/FTC versus placebo. Treatment with TDF/FTC reduced the fraction of subjects with abnormal fasting total-cholesterol (≥200 mg/dL) from 86.7% to 56.8% (p=0.001) and LDL-cholesterol (≥130 mg/dL) from 87.8% to 43.9% (p<0.001), which was not observed with placebo. There were no virological failures, and CD4 and triglyceride levels remained stable regardless of exposure. CONCLUSION: Coformulated TDF/FTC has an intrinsic lipid-lowering effect, likely attributable to TDF.
Resumo:
Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4¿dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4¿dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Resumo:
Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.
Resumo:
Background: Experimental evidences demonstrate that vegetable derived extracts inhibit cholesterol absorption in the gastrointestinal tract. To further explore the mechanisms behind, we modeled duodenal contents with several vegetable extracts. Results: By employing a widely used cholesterol quantification method based on a cholesterol oxidase-peroxidase coupled reaction we analyzed the effects on cholesterol partition. Evidenced interferences were analyzed by studying specific and unspecific inhibitors of cholesterol oxidase-peroxidase coupled reaction. Cholesterol was also quantified by LC/MS. We found a significant interference of diverse (cocoa and tea-derived) extracts over this method. The interference was strongly dependent on model matrix: while as in phosphate buffered saline, the development of unspecific fluorescence was inhibitable by catalase (but not by heat denaturation), suggesting vegetable extract derived H2O2 production, in bile-containing model systems, this interference also comprised cholesterol-oxidase inhibition. Several strategies, such as cholesterol standard addition and use of suitable blanks containing vegetable extracts were tested. When those failed, the use of a mass-spectrometry based chromatographic assay allowed quantification of cholesterol in models of duodenal contents in the presence of vegetable extracts. Conclusions: We propose that the use of cholesterol-oxidase and/or peroxidase based systems for cholesterol analyses in foodstuffs should be accurately monitored, as important interferences in all the components of the enzymatic chain were evident. The use of adequate controls, standard addition and finally, chromatographic analyses solve these issues.
Resumo:
Chicken is the most widely consumed meat all over the world due to chickens being easy to rear, their fast growth rate and the meat having good nutritional characteristics. The main objective of this paper was to study the effects of dietary fatty by-products in low, medium and high levels of oxidized lipids and trans fatty acids (TFAs) on the contents of cholesterol and oxycholesterols in meat, liver, and plasma of chickens. A palm fatty acid distillate, before and after hydrogenation, and a sunflower-olive oil blend (70/30, v/v) before and after use in a commercial frying process were used in feeding trials after adding 6% of the fats to the feeds. Highly oxidized lipid and TFA feeds significantly increased the contents of cholesterol and oxycholesterols in all tissues of chicken (0.01 < p <= 0.05). The contents of oxycholesterols in chicken meat, liver and plasma obtained from TFA feeding trials varied between 17 and 48 μg/100 g in meat, 19-42 μg/100 g in liver and 105-126 μg/dL in plasma. In contrast, in the oxidized lipid feeding trials, oxycholesterols varied between 13 and 75 μg/100 g in meat, 30-58 μg/100 g in liver and 66-209 μg/dL in plasma. Meat from chickens fed with feeds containing high levels of TFAs or oxidized lipids may contribute to higher ingestion of cholesterol and oxycholesterols by humans.
Resumo:
Electronegative low-density lipoprotein (LDL(-)) is a modified fraction of LDL present in peripheral blood whose proportion is elevated in subjects with increased cardiovascular risk. LDL(-) has been shown to have an inflammatory effect on human endothelial cells and mononuclear blood cells. On the other hand, high-density lipoprotein (HDL) is known to have a protective effect against cardiovascular disease, partly mediated by its anti-inflammatory properties. The objective of the current work is to study the putative protective properties of HDL towards the inflammatory effect of LDL(-) in human monocytes, in order to elucidate the mechanisms behind their interaction. Total LDL and HDL were isolated by ultracentrifugation and LDL(-) was obtained from total LDL by anion exchange chromatography. HDL and LDL(-) were incubated together and then re-isolated, and their characteristics were compared to those of untreated lipoproteins. The inflammatory activity of the lipoproteins was determined by incubating monocytes with lipoproteins and measuring cytokine release from the cultured monocytes. The biochemical composition and electrophoretic mobility of the lipoproteins were also determined before and after their interaction. Incubation of HDL with LDL(-) reduced the inflammatory effect of LDL(-) and, in turn, HDL gained inflammatory properties. This indicates a transfer of inflammatory potential taking place during the interaction of LDL(-) and HDL. Additionally, LDL(-) lost non-esterified fatty acids (NEFAs) while HDL gained the same. We conclude that a transfer of NEFAs takes place between LDL(-) and HDL. These observations suggest that NEFAs play a role in the inflammatory effect mediated by LDL(-).
Resumo:
Background: The incidence of cardiovascular events in HIV patients has fallen. Methods: We identified 81 patients with a history of coronary events from 2 hospitals in Spain to evaluate management of CVRF before and after the event. Results: The prevalence of coronary events was 2.15%. At the time of the coronary event, CVRF were highly prevalent. Decrease in total cholesterol (P=0.025) and LDLc(P=0.004) was observed. LDLc and HDLc were determined and the percentage of patients with LDLc &100 mg/dL remained stable at the last visit. Conclusions: The prevalence of coronary disease in our cohort was low. Although CVRF were highly.
Resumo:
S’han descrit informes contradictoris sobre els efectes d’Efavirenz (EFV) i lopinavir/ritonavir (LPV/r) al teixit adipós subcutani (SAT). L’objectiu d’aquest estudi era evaluar els efectes moleculars i clínics de LPV/r i EFV, tots dos en combinació amb tenofovir/emtricitabina (TDF/FTC), sobre el SAT dels pacients infectats per VIH sense tractament antirretroviral previ. Després de 48 setmanes de tractament, TDF/FTC més LPV/r va augmentar de forma significativa el greix de les extremitats i els paràmetres lipídics, mentre que TDF/FTC/EFV només va augmentar de forma significativa el colesterol total i LDL. La expressió dels gens implicats en la diferenciació dels adipòcits i dels gens relacionats amb la mitocondria no va canviar de forma significativa en el SAT dels pacients exposats a LPV/r, mentre que Cyt b i els gens relacionats amb la imflamació estaven estimulats de forma significativa en el SAT dels pacients exposats a EFV.
Resumo:
Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.
Resumo:
Western societies can reduce avoidable mortality and morbidity by better understanding the relationship between obesity and chronic disease. This paper examines the joint determinants of obesity and of heart disease, diabetes, hypertension, and elevated cholesterol. It analyzes a broadly representative Spanish dataset, the 1999 Survey on Disabilities, Impairments and Health Status, using a health production theoretical framework together with a seemingly unrelated probit model approach that controls for unobserved heterogeneity and endogeneity. Its findings provide suggestive evidence of a positive and significant, although specification-dependent, association between obesity and the prevalence of chronic illness