4 resultados para Gtpases
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (.100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.
Resumo:
La família de proteïnes HERC contenen dos dominis característics: HECT i RLD (RCC1-like). Proteïnes amb dominis HECT funcionen com ubiquitina ligasas i proteïnes amb dominis RLD actuen com a reguladors de GTPases. En humans, la família HERC està formada per sis membres: les gegants (HERC1-2) i les petites (HERC3-6). HERC1 va ser la primera a identificar-se, conté dos dominis RLD (RLD1 i RLD2) i ha estat implicada en tràfic de membrana, proliferació i creixement cel.lular per les seves interaccions amb clatrina, M2-piruvat quinasa i tuberina (TSC2). Aquí es descriu la caracterització del ratolí "rescat" d'una mutació espontània i recessiva anomenada tambaleante, que causa una degeneració progressiva de les cèl.lules de Purkinje amb atàxia severa, un creixement reduït i una menor supervivència. Aquest rescat va ser realitzat amb un transgèn de cDNA de HERC1 humà i demostra que HERC1 és el responsable del fenotip oscil.lant. Hem generats animals knock-outs de HERC1 que no expressen el extremo ubiquitina ligasa de la proteïna, i que no mimetitzen el fenotip tambaleante. La resposta de MEFs de tambaleante a insulina tampoc mimetitza l'activació reduïda dels substrats de mTOR, ni l'autofàgia observats en l'animal tambaleante. Els nostres resultats suggereixen que HERC1 podria estar implicada en la regulació de la biogènesi ribosomal. Aquestes observacions contribueixen a la caracterització funcional de la ubiquitina ligasa HERC1 i demostren un paper fins ara desconegut de HERC1 en creixement i neurodegeneració.
Resumo:
Immunity-related GTPases (IRG) play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago). Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF). We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.
Resumo:
The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.