54 resultados para Gravitational torques

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The part proportional to the Euler-Poincar characteristic of the contribution of spin-2 fields to the gravitational trace anomaly is computed. It is seen to be of the same sign as all the lower-spin contributions, making anomaly cancellation impossible. Subtleties related to Weyl invariance, gauge independence, ghosts, and counting of degrees of freedom are pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is argued that previous computations of the spin-(3/2 anomaly have spurious contributions, as there is Weyl-invariance breaking already at the classical level. The genuine, gauge-invariant, spin-(3/2 gravitational trace anomaly is computed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general formalism is set up to analyze the response of an arbitrary solid elastic body to an arbitrary metric gravitational wave (GW) perturbation, which fully displays the details of the interaction antenna wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinized. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical gravitational wave (GW) detectors offer a wealth of so far unexplored possibilities to detect gravitational radiation. We find that a sphere can be used as a powerful testbed for any metric theory of gravity, not only general relativity as considered so far, by making use of a deconvolution procedure for all the electric components of the Riemann tensor. We also find that the spheres cross section is large at two frequencies, and advantageous at higher frequencies in the sense that a single antenna constitutes a real xylophone in its own. Proposed GW networks will greatly benefit from this. The main features of a two large sphere observatory are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most important features of the proposed spherical gravitational wave detectors are closely linked with their symmetry. Hollow spheres share this property with solid ones, considered in the literature so far, and constitute an interesting alternative for the realization of an omnidirectional gravitational wave detector. In this paper we address the problem of how a hollow elastic sphere interacts with an incoming gravitational wave and find an analytical solution for its normal mode spectrum and response, as well as for its energy absorption cross sections. It appears that this shape can be designed having relatively low resonance frequencies (~ 200 Hz) yet keeping a large cross section, so its frequency range overlaps with the projected large interferometers. We also apply the obtained results to discuss the performance of a hollow sphere as a detector for a variety of gravitational wave signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the response and cross sections for the absorption of GW energy generated in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere. As a source of the GW we take a binary system in the Newtonian approximation. For masses of the stars of the order of the solar mass, the emitted GW sweeps a range of frequencies which include the first resonant mode of the detector.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity (at least with a negative cosmological constant) can be modeled by the large N thermodynamics of quantum field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity, including black hole formation and decay, and even more extreme examples involving topology change. As concrete examples which show that this correspondence holds even when the space-time is only locally asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-bolt spacetimes, and compare them to a (2+1)-dimensional conformal field theory (at large N) compactified on a squashed three-sphere and on the twisted plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain a solution describing a gravitational shock wave propagating along a Randall-Sundrum brane. The interest of such a solution is twofold: on the one hand, it is the first exact solution for a localized source on a Randall-Sundrum three-brane. On the other hand, one can use it to study forward scattering at Planckian energies, including the effects of the continuum of Kaluza-Klein modes. We map out the different regimes for the scattering obtained by varying the center-of-mass energy and the impact parameter. We also discuss exact shock waves in ADD scenarios with compact extra dimensions.