22 resultados para Glutathione (GSH)
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Using isolated, in situ, single-pass perfused rat livers, incubations of freshly isolated hepatocytes, and sinusoidal membrane-enriched vesicles, we and others have shown the saturability of transport (efflux) of hepatic glutathione (GSH). These observations have implicated a carrier mechanism. Our present studies were designed to provide further evidence in support of a carrier mechanism for hepatic GSH efflux by demonstrating competition by liver-specific ligands which are taken up by hepatocytes. Perfusing livers with different substances, we found that: (a) sulfobromophthalein-GSH (BSP-GSH) had a dose-dependent and fully reversible inhibitory effect on GSH efflux, while GSH alone did not have any effect; (b) taurocholate had no inhibitory effect; (c) all of the organic anions studied, i.e., BSP, rose bengal, indocyanine green, and unconjugated bilirubin (UCB), manifested potent, dose-dependent inhibitory effects, with absence of toxic effects and complete reversibility of inhibition in the case of UCB. The inhibitory effects of UCB could be overcome partially by raising (CoCl2-induced) hepatic GSH concentration. Because of the physiological importance of UCB, we conducted a detailed study of its inhibitory kinetics in the isolated hepatocyte model in the range of circulating concentrations of UCB. Studies with Cl- -free media, to inhibit the uptake of UCB by hepatocytes, showed that the inhibition of GSH efflux by UCB is apparently from inside the cell. This point was confirmed by showing that the inhibition is overcome only when bilirubin-loaded cells are cleared of bilirubin (incubation with 5% bovine serum albumin). Using Gunn rat hepatocytes and purified bilirubin mono- and diglucuronides, we found that both UCB and glucuronide forms of bilirubin inhibit GSH efflux in a dose-dependent manner. We conclude that the organic anions, although taken up by a mechanism independent of GSH, may competitively inhibit the carrier for GSH efflux from inside the hepatocyte.
Resumo:
Isolated hepatocytes incubated with [35S]-methionine were examined for the time-dependent accumulation of [35S]-glutathione (GSH) in cytosol and mitochondria, the latter confirmed by density gradient purification. In GSH-depleted and -repleted hepatocytes, the increase of specific activity of mitochondrial GSH lagged behind cytosol, reaching nearly the same specific activity by 1-2 h. However, in hepatocytes from ethanol-fed rats, the rate of increase of total GSH specific radioactivity in mitochondria was markedly suppressed. In in vivo steady-state experiments, the mass transport of GSH from cytosol to mitochondria and vice versa was 18 nmol/min per g liver, indicating that the half-life of mitochondrial GSH was approximately 18 min in controls. The fractional transport rate of GSH from cytosol to mitochondria, but not mitochondria to cytosol, was significantly reduced in the livers of ethanol-fed rats. Thus, ethanol-fed rats exhibit a decreased mitochondrial GSH pool size due to an impaired entry of cytosol GSH into mitochondria. Hepatocytes from ethanol-fed rats exhibited a greater susceptibility to the oxidant stress-induced cell death from tert-butylhydroperoxide. Incubation with glutathione monoethyl ester normalized the mitochondrial GSH and protected against the increased susceptibility to t-butylhydroperoxide, which was directly related to the lowered mitochondrial GSH pool size in ethanol-fed cells.
Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics
Resumo:
Using the Xenopus oocyte expression system, we have previously identified an approximately 4-kb fraction of mRNA from rat liver that expresses sulfobromophthalein-glutathione (BSP-GSH)-insensitive reduced glutathione (GSH) transport (Fernandez-Checa, J., J. R. Yi, C. Garcia-Ruiz, Z. Knezic, S. Tahara, and N. Kaplowitz. 1993. J. Biol. Chem. 268:2324-2328). Starting with a cDNA library constructed from this fraction, we have now isolated a single clone that expresses GSH transporter activity. The cDNA for the rat canalicular GSH transporter (RcGshT) is 4.05 kb with an open reading frame of 2,505 nucleotides encoding for a polypeptide of 835 amino acids (95,785 daltons). No identifiable homologies were found in searching various databases. An approximately 96-kD protein is generated in in vitro translation of cRNA for RcGshT. Northern blot analysis reveals a single 4-kb transcript in liver, kidney, intestine, lung, and brain. The abundance of mRNA for RcGshT in rat liver increased 3, 6, and 12 h after a single dose of phenobarbital. Insensitivity to BSP-GSH and induction by phenobarbital, unique characteristics of canalicular GSH secretion, suggest that RcGshT encodes for the canalicular GSH transporter.
Resumo:
Background and purpose: The TP53 induced glycolysis and apoptosis regulator (TIGAR) functions to lower fructose-2,6-bisphosphate (Fru-2,6-P2) levels in cells, consequently decreasing glycolysis and leading to the scavenging of reactive oxygen species (ROS), which correlate with a higher resistance to cell death. The decrease in intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic lesions. Given these good prospects of TIGAR for metabolic regulation and p53-response modulation, we analyzed the effects of TIGAR knockdown in U87MG and T98G glioblastoma-derived cell lines. Methods/results: After TIGAR-knockdown in glioblastoma cell lines, different metabolic parameters were assayed, showing an increase in Fru-2,6-P2, lactate and ROS levels, with a concomitant decrease in reduced glutathione (GSH) levels. In addition, cell growth was inhibited without evidence of apoptotic or autophagic cell death. In contrast, a clear senescent phenotype was observed. We also found that TIGAR protein levels were increased shortly after irradiation. In addition, avoiding radiotherapy-triggered TIGAR induction by gene silencing resulted in the loss of capacity of glioblastoma cells to form colonies in culture and the delay of DNA repair mechanisms, based in c-H2AX foci, leading cells to undergo morphological changes compatible with a senescent phenotype. Thus, the results obtained raised the possibility to consider TIGAR as a therapeutic target to increase radiotherapy effects. Conclusion: TIGAR abrogation provides a novel adjunctive therapeutic strategy against glial tumors by increasing radiation-induced cell impairment, thus allowing the use of lower radiotherapeutic doses.
Resumo:
Hepatocytes from rats that were fed ethanol chronically for 6-8 wk were found to have a modest decrease in cytosolic GSH (24%) and a marked decrease in mitochondrial GSH (65%) as compared with pair-fed controls. Incubation of hepatocytes from ethanol-fed rats for 4 h in modified Fisher's medium revealed a greater absolute and fractional GSH efflux rate than controls with maintenance of constant cellular GSH, indicating increased net GSH synthesis. Inhibition of gamma-glutamyltransferase had no effect on these results, which indicates that no degradation of GSH had occurred during these studies. Enhanced fractional efflux was also noted in the perfused livers from ethanol-fed rats. Incubation of hepatocytes in medium containing up to 50 mM ethanol had no effect on cellular GSH, accumulation of GSH in the medium, or cell viability. Thus, chronic ethanol feeding causes a modest fall in cytosolic and a marked fall in mitochondrial GSH. Fractional GSH efflux and therefore synthesis are increased under basal conditions by chronic ethanol feeding, whereas the cellular concentration of GSH drops to a lower steady state level. Incubation of hepatocytes with ethanol indicates that it has no direct, acute effect on hepatic GSH homeostasis.
Resumo:
Chronic ethanol feeding selectively impairs the translocation of cytosol GSH into the mitochondrial matrix. Since ethanol-induced liver cell injury is preferentially localized in the centrilobular area, we examined the hepatic acinar distribution of mitochondrial GSH transport in ethanol-fed rats. Enriched periportal (PP) and perivenous (PV) hepatocytes from pair- and ethanol-fed rats were prepared as well as mitochondria from these cells. The mitochondrial pool size of GSH was decreased in both PP and PV cells from ethanol-fed rats either as expressed per 10(6) cells or per microliter of mitochondrial matrix volume. The rate of reaccumulation of mitochondrial GSH and the linear relationship of mitochondrial to cytosol GSH from ethanol-fed mitochondria were lower for both PP and PV cells, effects observed more prominently in the PV cells. Mitochondrial functional integrity was lower in both PP and PV ethanol-fed rats, which was associated with decreased cellular ATP levels and mitochondrial membrane potential, effects which were greater in the PV cells. Mitochondrial GSH depletion by ethanol feeding preceded the onset of functional changes in mitochondria, suggesting that mitochondrial GSH is critical in maintaining a functionally competent organelle and that the greater depletion of mitochondrial GSH by ethanol feeding in PV cells could contribute to the pathogenesis of alcoholic liver disease.
Resumo:
Saccharomyces cerevisiae cells contain three omega-class glutathione transferases with glutaredoxin activity (Gto1, Gto2, and Gto3), in addition to two glutathione transferases (Gtt1 and Gtt2) not classifiable into standard classes. Gto1 is located at the peroxisomes, where it is targeted through a PTS1-type sequence, whereas Gto2 and Gto3 are in the cytosol. Among the GTO genes, GTO2 shows the strongest induction of expression by agents such as diamide, 1-chloro-2,4-dinitrobenzene, tert-butyl hydroperoxide or cadmium, in a manner that is dependent on transcriptional factors Yap1 and/or Msn2/4. Diamide and 1-chloro-2,4-dinitrobenzene (causing depletion of reduced glutathione) also induce expression of GTO1 over basal levels. Phenotypic analyses with single and multiple mutants in the S. cerevisiae glutathione transferase genes show that, in the absence of Gto1 and the two Gtt proteins, cells display increased sensitivity to cadmium. A gto1-null mutant also shows growth defects on oleic acid-based medium, which is indicative of abnormal peroxisomal functions, and altered expression of genes related to sulfur amino acid metabolism. As a consequence, growth of the gto1 mutant is delayed in growth medium without lysine, serine, or threonine, and the mutant cells have low levels of reduced glutathione. The role of Gto1 at the S. cerevisiae peroxisomes could be related to the redox regulation of the Str3 cystathionine -lyase protein. This protein is also located at the peroxisomes in S. cerevisiae, where it is involved in transulfuration of cysteine into homocysteine, and requires a conserved cysteine residue for its biological activity.
Resumo:
La 3,4-Metilendioximetanfetamina (MDMA, éxtasis) es un derivado anfetamínico sintético ampliamente usado como droga recreativa, que produce neurotoxicidad serotonérgica en animales y posiblemente también en humanos. El mecanismo subyacente de neurotoxicidad, incluye la formación de especies reactivas de oxigeno (ROS), pero la fuente de generación de estos es un punto de controversia. Se postula que la neurotoxicidad inducida por la MDMA es mediada por la formación de metabolitos bioreactivos. Específicamente, los metabolitos primarios de tipo catecol, la 3,4- dihidroximetanfetamina (HHMA) y la 3,4-dihidroxianfetamina (HHA), que luego dan lugar a la formación de conjugados con el glutatión y la N-acetilcisteína, y que conservan la capacidad de entrar en el ciclo redox y presentan neurotoxicidad serotonérgica en ratas. Aunque la presencia de dichos metabolitos se demostró recientemente en microdialisados de cerebros de ratas, su formación en humanos no se ha reportado aun. Este trabajo describe la detección de N-acetil-cisteína-HHMA (NAC-HHMA) y N-acetil-cisteína-HHA (NAC-HHA) en orina humana de 15 consumidores recreacionales de MDMA (1.5 mg/kg) en un entorno controlado. Los resultados revelan que en las primeras 4 horas después del consumo de MDMA aproximadamente el 0.002% de la dosis administrada es recuperada como aductos tioéter. Los polimorfismos genéticos en la expresión de las enzimas CYP2D6 y COMT, que en conjunto son las principales determinantes de los niveles estables de HHMA y HHA, posiblemente expliquen la variabilidad interindividual observada en la recuperación de la NAC-HHMA y la NAC-HHA en orina. Resumiendo, por primera vez se demuestra la formación de aductos tioéteres neurotóxicos de la MDMA en humanos. Estos resultados apoyan la hipótesis de que la bioactivación de la MDMA a metabolitos neurotóxicos es el mecanismo relevante para la generación de la neurotoxicidad en humanos.
Resumo:
This study addressed the contribution of acidic sphingomyelinase (ASMase) in TNF-alpha-mediated hepatocellular apoptosis. Cultured hepatocytes depleted of mitochondrial glutathione (mGSH) became sensitive to TNF-alpha, undergoing a time-dependent apoptotic cell death preceded by mitochondrial membrane depolarization, cytochrome c release, and caspase activation. Cyclosporin A treatment rescued mGSH-depleted hepatocytes from TNF-alpha-induced cell death. In contrast, mGSH-depleted hepatocytes deficient in ASMase were resistant to TNF-alpha-mediated cell death but sensitive to exogenous ASMase. Furthermore, although in vivo administration of TNF-alpha or LPS to galactosamine-pretreated ASMase(+/+) mice caused liver damage, ASMase(-/-) mice exhibited minimal hepatocellular injury. To analyze the requirement of ASMase, we assessed the effect of glucosylceramide synthetase inhibition on TNF-alpha-mediated apoptosis. This approach, which blunted glycosphingolipid generation by TNF-alpha, protected mGSH-depleted ASMase(+/+) hepatocytes from TNF-alpha despite enhancement of TNF-alpha-stimulated ceramide formation. To further test the involvement of glycosphingolipids, we focused on ganglioside GD3 (GD3) because of its emerging role in apoptosis through interaction with mitochondria. Analysis of the cellular redistribution of GD3 by laser scanning confocal microscopy revealed the targeting of GD3 to mitochondria in ASMase(+/+) but not in ASMase(-/-) hepatocytes. However, treatment of ASMase(-/-) hepatocytes with exogenous ASMase induced the colocalization of GD3 and mitochondria. Thus, ASMase contributes to TNF-alpha-induced hepatocellular apoptosis by promoting the mitochondrial targeting of glycosphingolipids.
Resumo:
White adipose tissue samples from obese and lean patients were used for the estimation ofinsulin protease and insulin:glutathione transhydrogenase using 1251-labeled insulin. There was no activity detected in the absence of reduced glutathione, which indicates that insulin is cleaved in human adipose "tissue through reduction of the disulfide bridge between the chains. O bese patients showed higher transhydrogenase activity (per U tissue protein wt, per U tissue wt, and in the total adipose tissue mass) than the lean group. There is a significant correlation between the activity per U tissue wt, and protein and total activity in the whole adipose tissue with respect to body mass index, with a higher activity in obese patients. The potential ofinsulin cleavage by adipose tissue in obese patients was a mean 5.6-fold higher than that in controla. The coexistence of high insulinemia and high cleavage capability implies that insulin secretion and turnover are increased in the o bese. Thus, white adipose tissue may be crucial in the control of energy availability through modulation ofinsulin cleavage.
Resumo:
Background: Pharmacogenetic studies are essential in understanding the interindividual variability of drug responses. DNA sample collection for genotyping is a critical step in genetic studies. A method using dried blood samples from finger-puncture, collected on DNA-cards, has been described as an alternative to the usual venepuncture technique. The purpose of this study is to evaluate the implementation of the DNA cards method in a multicentre clinical trial, and to assess the degree of investigators' satisfaction and the acceptance of the patients perceived by the investigators.Methods: Blood samples were collected on DNA-cards. The quality and quantity of DNA recovered were analyzed. Investigators were questioned regarding their general interest, previous experience, safety issues, preferences and perceived patient satisfaction. Results: 151 patients' blood samples were collected. Genotyping of GST polymorphisms was achieved in all samples (100%). 28 investigators completed the survey. Investigators perceived patient satisfaction as very good (60.7%) or good (39.3%), without reluctance to finger puncture. Investigators preferred this method, which was considered safer and better than the usual methods. All investigators would recommend using it in future genetic studies. Conclusion: Within the clinical trial setting, the DNA-cards method was very well accepted by investigators and patients (in perception of investigators), and was preferred to conventional methods due to its ease of use and safety.
Resumo:
Background: Methotrexate is a chemotherapeutic agent used to treat a variety of cancers. However, the occurrence of resistance limits its effectiveness. Cytochrome c in its reduced state is less capable of triggering the apoptotic cascade. Thus, we set up to study the relationship among redox state of cytochrome c, apoptosis and the development of resistance to methotrexate in MCF7 human breast cancer cells. Results: Cell incubation with cytochrome c-reducing agents, such as tetramethylphenylenediamine, ascorbate or reduced glutathione, decreased the mortality and apoptosis triggered by methotrexate. Conversely, depletion of glutathione increased the apoptotic action of methotrexate, showing an involvement of cytochrome c redox state in methotrexateinduced apoptosis. Methotrexate-resistant MCF7 cells showed increased levels of endogenous reduced glutathione and a higher capability to reduce exogenous cytochrome c. Using functional genomics we detected the overexpression of GSTM1 and GSTM4 in methotrexate-resistant MCF7 breast cancer cells, and determined that methotrexate was susceptible of glutathionylation by GSTs. The inhibition of these GSTM isoforms caused an increase in methotrexate cytotoxicity in sensitive and resistant cells. Conclusions: We conclude that overexpression of specific GSTMs, GSTM1 and GSTM4, together with increased endogenous reduced glutathione levels help to maintain a more reduced state of cytochrome c which, in turn, would decrease apoptosis, thus contributing to methotrexate resistance in human MCF7 breast cancer cells.
Resumo:
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 1820 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Resumo:
Background: Protein domains represent the basic units in the evolution of proteins. Domain duplication and shuffling by recombination and fusion, followed by divergence are the most common mechanisms in this process. Such domain fusion and recombination events are predicted to occur only once for a given multidomain architecture. However, other scenarios may be relevant in the evolution of specific proteins, such as convergent evolution of multidomain architectures. With this in mind, we study glutaredoxin (GRX) domains, because these domains of approximately one hundred amino acids are widespread in archaea, bacteria and eukaryotes and participate in fusion proteins. GRXs are responsible for the reduction of protein disulfides or glutathione-protein mixed disulfides and are involved in cellular redox regulation, although their specific roles and targets are often unclear. Results: In this work we analyze the distribution and evolution of GRX proteins in archaea,bacteria and eukaryotes. We study over one thousand GRX proteins, each containing at least one GRX domain, from hundreds of different organisms and trace the origin and evolution of the GRX domain within the tree of life. Conclusion: Our results suggest that single domain GRX proteins of the CGFS and CPYC classes have, each, evolved through duplication and divergence from one initial gene that was present in the last common ancestor of all organisms. Remarkably, we identify a case of convergent evolution in domain architecture that involves the GRX domain. Two independent recombination events of a TRX domain to a GRX domain are likely to have occurred, which is an exception to the dominant mechanism of domain architecture evolution.
Resumo:
Background: Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results: Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions: We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.