10 resultados para Gerhard Köpf
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Recently there has been a great deal of work on noncommutative algebraic cryptography. This involves the use of noncommutative algebraic objects as the platforms for encryption systems. Most of this work, such as the Anshel-Anshel-Goldfeld scheme, the Ko-Lee scheme and the Baumslag-Fine-Xu Modular group scheme use nonabelian groups as the basic algebraic object. Some of these encryption methods have been successful and some have been broken. It has been suggested that at this point further pure group theoretic research, with an eye towards cryptographic applications, is necessary.In the present study we attempt to extend the class of noncommutative algebraic objects to be used in cryptography. In particular we explore several different methods to use a formal power series ring R && x1; :::; xn && in noncommuting variables x1; :::; xn as a base to develop cryptosystems. Although R can be any ring we have in mind formal power series rings over the rationals Q. We use in particular a result of Magnus that a finitely generated free group F has a faithful representation in a quotient of the formal power series ring in noncommuting variables.
Resumo:
The Editorial presents the focus, scope, policies, and the inaugural issue of NeoBiota, a new open access peer-reviewed journal of biological invasions. The new journal NeoBiota is a continuation of the former NEOBIOTA publication series. The journal will deal with all aspects of invasion biology and impose no restrictions on manuscript size neither on use of color. NeoBiota implies an XML-based editorial workflow and several cutting-edge innovations in publishing and dissemination, such as semantic markup of and enhancements to published texts, data publication, and extensive cross-linking within the journal and to external sources
Resumo:
The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.
Resumo:
No menos útil que la escritura de la historia para conocer lo que sucedió realmente es analizar las maneras de escribir esa misma historia para saber qué motivaciones, intenciones, fi lias o fobias latieron bajo la prosa de un historiador, un arte del que ya la misma antigüedad nos brindó excelentes ejercicios, por citar dos ejemplos ilustres, como la Maledicencia de Heródoto, de Plutarco, o el Cómo se debe escribir la historia, de Luciano de Samosata. A esa labor tan interesante se dedicó, en diciembre de 2006, un coloquio en el Institut für Geschichtswissenschaft, Abteilung Alte Geschichte de la Rheinische Friedrich- Wilhelms-Universität de Bonn y con el no menos importante motivo de festejar el octogésimo aniversario de una celebridad de la historia antigua como la del profesor Gerhard Wirth.
Resumo:
We show that transport in the presence of entropic barriers exhibits peculiar characteristics which makes it distinctly different from that occurring through energy barriers. The constrained dynamics yields a scaling regime for the particle current and the diffusion coefficient in terms of the ratio between the work done to the particles and available thermal energy. This interesting property, genuine to the entropic nature of the barriers, can be utilized to effectively control transport through quasi-one-dimensional structures in which irregularities or tortuosity of the boundaries cause entropic effects. The accuracy of the kinetic description has been corroborated by simulations. Applications to different dynamic situations involving entropic barriers are outlined.
Resumo:
We present a novel scheme for the appearance of stochastic resonance when the dynamics of a Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an entropic contribution to the potential, may upon application of a periodic driving force result in an increase of the spectral amplification at an optimum value of the ambient noise level. The entropic stochastic resonance, characteristic of small-scale systems, may constitute a useful mechanism for the manipulation and control of single molecules and nanodevices.
Resumo:
We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation, which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one-dimensional diffusion. The validity of this approximation, based on the assumption of an instantaneous equilibration of the particle distribution in the cross section of the structure, is analyzed by comparing the different time scales that characterize the problem. A validity criterion is established in terms of the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical simulations that the critical value of the force up to which this description holds true scales as the square of the periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the structure.
Resumo:
The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating the resulting positional stability of a holographic trap. We show that, despite imparting a more unstable modulation to the wavefront, our digitally-addressed SLM generates optical traps in the sample plane stable enough for most applications. We further show that traps produced by the analog-addressed SLM exhibit a superior pointing stability, better than 1 nm, which is comparable to that of non-holographic tweezers. These results suggest a means to implement precision force measurement experiments with holographic optical tweezers (HOTs).