5 resultados para Geography|Geology|Oceanography|Remote sensing

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing spatial, spectral, and temporal resolutions of images, acquired over a reasonably sized image extent, result in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is very attractive for monitoring, management, and scienti c activities. With Moore's Law alive and well, more and more parallelism is introduced into all computing platforms, at all levels of integration and programming to achieve higher performance and energy e ciency. Being the geometric calibration process one of the most time consuming processes when using remote sensing images, the aim of this work is to accelerate this process by taking advantage of new computing architectures and technologies, specially focusing in exploiting computation over shared memory multi-threading hardware. A parallel implementation of the most time consuming process in the remote sensing geometric correction has been implemented using OpenMP directives. This work compares the performance of the original serial binary versus the parallelized implementation, using several multi-threaded modern CPU architectures, discussing about the approach to nd the optimum hardware for a cost-e ective execution.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book is one out of 8 IAEG XII Congress volumes, and deals with Landslide processes, including: field data and monitoring techniques, prediction and forecasting of landslide occurrence, regional landslide inventories and dating studies, modeling of slope instabilities and secondary hazards (e.g. impulse waves and landslide-induced tsunamis, landslide dam failures and breaching), hazard and risk assessment, earthquake and rainfall induced landslides, instabilities of volcanic edifices, remedial works and mitigation measures, development of innovative stabilization techniques and applicability to specific engineering geological conditions, use of geophysical techniques for landslide characterization and investigation of triggering mechanisms. Focuses is given to innovative techniques, well documented case studies in different environments, critical components of engineering geological and geotechnical investigations, hydrological and hydrogeological investigations, remote sensing and geophysical techniques, modeling of triggering, collapse, runout and landslide reactivation, geotechnical design and construction procedures in landslide zones, interaction of landslides with structures and infrastructures and possibility of domino effects. The Engineering Geology for Society and Territory volumes of the IAEG XII Congress held in Torino from September 15-19, 2014, analyze the dynamic role of engineering geology in our changing world and build on the four main themes of the congress: environment, processes, issues, and approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In May 1999, the European Space Agency (ESA) selected the Earth Explorer Opportunity Soil Moisture and Ocean Salinity (SMOS) mission to obtain global and frequent soil moisture and ocean salinity maps. SMOS' single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L-band two-dimensional aperture synthesis radiometer with multiangular observation capabilities. At L-band, the brightness temperature sensitivity to the sea surface salinity (SSS) is low, approximately 0.5 K/psu at 20/spl deg/C, decreasing to 0.25 K/psu at 0/spl deg/C, comparable to that to the wind speed /spl sim/0.2 K/(m/s) at nadir. However, at a given time, the sea state does not depend only on local winds, but on the local wind history and the presence of waves traveling from far distances. The Wind and Salinity Experiment (WISE) 2000 and 2001 campaigns were sponsored by ESA to determine the impact of oceanographic and atmospheric variables on the L-band brightness temperature at vertical and horizontal polarizations. This paper presents the results of the analysis of three nonstationary sea state conditions: growing and decreasing sea, and the presence of swell. Measured sea surface spectra are compared with the theoretical ones, computed using the instantaneous wind speed. Differences can be minimized using an "effective wind speed" that makes the theoretical spectrum best match the measured one. The impact on the predicted brightness temperatures is then assessed using the small slope approximation/small perturbation method (SSA/SPM).