11 resultados para Gene-flow

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene flow (defined as allele exchange between populations) and gene flux (defined as allele exchange during meiosis in heterokaryotypic females) are important factors decreasing genetic differentiation between populations and inversions. Many chromosomal inversions are under strong selection and their role in recombination reduction enhances the maintenance of their genetic distinctness. Here we analyze levels and patterns of nucleotide diversity, selection and demographic history, using 37 individuals of Drosophila subobscura from Mount Parnes (Greece) and Barcelona (Spain). Our sampling focused on two frequent O-chromosome arrangements that differ by two overlapping inversions (OST and O3+4), which are differentially adapted to the environment as observed by their opposing latitudinal clines in inversion frequencies. The six analyzed genes (Pif1A, Abi, Sqd, Yrt, Atpa and Fmr1) were selected for their location across the O-chromosome and their implication in thermal adaptation. Despite the extensive gene flux detected outside the inverted region, significant genetic differentiation between both arrangements was found inside it. However, high levels of gene flow were detected for all six genes when comparing the same arrangement among populations. These results suggest that the adaptive value of inversions is maintained, regardless of the lack of genetic differentiation within arrangements from different populations, and thus favors the Local Adaptation hypothesis over the Coadapted Genome hypothesis as the basis of the selection acting on inversions in these populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mesoamerica, defined as the broad linguistic and cultural area from middle southern Mexico to Costa Rica, might have played a pivotal role during the colonization of theAmerican continent. It has been suggested that the Mesoamerican isthmus could have played an important role in severely restricting prehistorically gene flow between North and SouthAmerica. Although the Native American component has been already described in admixedMexican populations, few studies have been carried out in native Mexican populations. In thisstudy we present mitochondrial DNA (mtDNA) sequence data for the first hypervariable region (HVR-I) in 477 unrelated individuals belonging to eleven different native populations from Mexico. Almost all the Native Mexican mtDNAs could be classified into the four pan-Amerindian haplogroups (A2, B2, C1 and D1); only three of them could be allocated to the rare Native American lineage D4h3. Their haplogroup phylogenies are clearly star-like, as expected from relatively young populations that have experienced diverse episodes of genetic drift (e.g. extensive isolation, genetic drift and founder effects) and posterior population expansions. In agreement with this observation is the fact that Native Mexican populations show a high degree of heterogeneity in their patterns of haplogroup frequencies. HaplogroupX2a was absent in our samples, supporting previous observations where this clade was only detected in the American northernmost areas. The search for identical sequences in the American continent shows that, although Native Mexican populations seem to show a closer relationship to North American populations, they cannot be related to a single geographical region within the continent. Finally, we did not find significant population structure on the maternal lineages when considering the four main and distinct linguistic groups represented in our Mexican samples (Oto-Manguean, Uto-Aztecan, Tarascan, and Mayan), suggesting that genetic divergence predates linguistic diversification in Mexico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: CODIS-STRs in Native Mexican groups have rarely been analysed for human identification and anthropological purposes. AIM:To analyse the genetic relationships and population structure among three Native Mexican groups from Mesoamerica.SUBJECTS AND METHODS: 531 unrelated Native individuals from Mexico were PCR-typed for 15 and 9 autosomal STRs (Identifiler™ and Profiler™ kits, respectively), including five population samples: Purépechas (Mountain, Valley and Lake), Triquis and Yucatec Mayas. Previously published STR data were included in the analyses. RESULTS:Allele frequencies and statistical parameters of forensic importance were estimated by population. The majority of Native groups were not differentiated pairwise, excepting Triquis and Purépechas, which was attributable to their relative geographic and cultural isolation. Although Mayas, Triquis and Purépechas-Mountain presented the highest number of private alleles, suggesting recurrent gene flow, the elevated differentiation of Triquis indicates a different origin of this gene flow. Interestingly, Huastecos and Mayas were not differentiated, which is in agreement with the archaeological hypothesis that Huastecos represent an ancestral Maya group. Interpopulation variability was greater in Natives than in Mestizos, both significant.CONCLUSION: Although results suggest that European admixture has increased the similarity between Native Mexican groups, the differentiation and inconsistent clustering by language or geography stresses the importance of serial founder effect and/or genetic drift in showing their present genetic relationships.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DnaSP is a software package for the analysis of DNA polymorphism data. Present version introduces several new modules and features which, among other options allow: (1) handling big data sets (~5 Mb per sequence); (2) conducting a large number of coalescent-based tests by Monte Carlo computer simulations; (3) extensive analyses of the genetic differentiation and gene flow among populations; (4) analysing the evolutionary pattern of preferred and unpreferred codons; (5) generating graphical outputs for an easy visualization of results. Availability: The software package, including complete documentation and examples, is freely available to academic users from: http://www.ub.es/dnasp

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DnaSP, DNA Sequence Polymorphism, is a software package for the analysis of nucleotide polymorphism from aligned DNA sequence data. DnaSP can estimate several measures of DNA sequence variation within and between populations (in noncoding, synonymous or nonsynonymous sites, or in various sorts of codon positions), as well as linkage disequilibrium, recombination, gene flow and gene conversion parameters. DnaSP can also carry out several tests of neutrality: Hudson, Kreitman and Aguadé (1987), Tajima (1989), McDonald and Kreitman (1991), Fu and Li (1993), and Fu (1997) tests. Additionally, DnaSP can estimate the confidence intervals of some test-statistics by the coalescent. The results of the analyses are displayed on tabular and graphic form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sardinia is the second largest island in the Mediterranean and, together with Corsica and nearby mainland areas, one of the top biodiversity hotspots in the region. The origin of Sardinia traces back to the opening of the western Mediterranean in the late Oligocene. This geological event and the subsequent Messinian Salinity Crisis and Pleistocene glacial cycles have had a major impact on local biodiversity. The Dysdera woodlouse hunter spiders are one of the most diverse ground-dweller groups in the Mediterranean. Here we describe the first two species of this genus endemic to Sardinia: Dysdera jana sp. n. and Dysdera shardana sp. n. The two species show contrasting allopatric distribution: D. jana sp. n. is a narrow endemic while D. shardana sp. n. is distributed throughout most of the island. A multi-gene DNA sequence phylogenetic analys based on mitochondrial and nuclear genes supports the close relationships of the new species to the type species of the genus Dysdera erythrina. Age estimates reject Oligocene origin of the new Dysdera species and identify the Messinian Salinity Crises as the most plausible period for the split between Sardinian endemics and their closest relatives. Phylogeographic analysis reveals deep genetic divergences and population structure in Dysdera shardana sp. n., suggesting that restriction to gene flow probably due to environmental factors could explain local speciation events. Taxonomy, phylogeny, DNA sequencing, Mediterranean biogeography, phylogeography

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U) and the sex chromosome (A), taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands) in the north to Málaga (Spain) in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The integration of ecological and evolutionary data is highly valuable for conservation planning. However, it has been rarely used in the marine realm, where the adequate design of marine protected areas (MPAs) is urgently needed. Here, we examined the interacting processes underlying the patterns of genetic structure and demographic strucuture of a highly vulnerable Mediterranean habitat-forming species (i.e. Paramuricea clavata (Risso, 1826)), with particular emphasis on the processes of contemporary dispersal, genetic drift, and colonization of a new population. Isolation by distance and genetic discontinuities were found, and three genetic clusters were detected; each submitted to variations in the relative impact of drift and gene flow. No founder effect was found in the new population. The interplay of ecology and evolution revealed that drift is strongly impacting the smallest, most isolated populations, where partial mortality of individuals was highest. Moreover, the eco-evolutionary analyses entailed important conservation implications for P. clavata. Our study supports the inclusion of habitat-forming organisms in the design of MPAs and highlights the need to account for genetic drift in the development of MPAs. Moreover, it reinforces the importance of integrating genetic and demographic data in marine conservation.