12 resultados para GLUCAGON-LIKE PEPTIDE-1
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events.
Resumo:
This paper discusses the role of deterministic components in the DGP and in the auxiliary regression model which underlies the implementation of the Fractional Dickey-Fuller (FDF) test for I(1) against I(d) processes with d ∈ [0, 1). This is an important test in many economic applications because I(d) processess with d & 1 are mean-reverting although, when 0.5 ≤ d & 1,, like I(1) processes, they are nonstationary. We show how simple is the implementation of the FDF in these situations, and argue that it has better properties than LM tests. A simple testing strategy entailing only asymptotically normally distributed tests is also proposed. Finally, an empirical application is provided where the FDF test allowing for deterministic components is used to test for long-memory in the per capita GDP of several OECD countries, an issue that has important consequences to discriminate between growth theories, and on which there is some controversy.
Resumo:
This paper discusses the role of deterministic components in the DGP and in the auxiliaryregression model which underlies the implementation of the Fractional Dickey-Fuller (FDF) test for I(1) against I(d) processes with d [0, 1). This is an important test in many economic applications because I(d) processess with d < 1 are mean-reverting although, when 0.5 = d < 1, like I(1) processes, they are nonstationary. We show how simple is the implementation of the FDF in these situations, and argue that it has better properties than LM tests. A simple testing strategy entailing only asymptotically normally distributedtests is also proposed. Finally, an empirical application is provided where the FDF test allowing for deterministic components is used to test for long-memory in the per capita GDP of several OECD countries, an issue that has important consequences to discriminate between growth theories, and on which there is some controversy.
Resumo:
Background: Kabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown. Methods: We have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited. Results: No duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group. Conclusion: Our results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.
Resumo:
In this paper we consider diffusion of a passive substance C in a temporarily and spatially inhomogeneous two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of two substances A and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different diffusion coefficients of C in A and B, we find that the variance of the distribution function of the said substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic ansatz and are then able to identify the interface between A and B as the main cause for this nonlinear dependence. We argue that, finally, for very large times the here temporarily dependent diffusion "constant" goes like t-1/3 to a constant asymptotic value D¿. The latter is calculated approximately by employing the effective-medium approximation and by fitting the simulation data to the said time dependence.
Resumo:
In this paper we consider diffusion of a passive substance C in a temporarily and spatially inhomogeneous two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of two substances A and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different diffusion coefficients of C in A and B, we find that the variance of the distribution function of the said substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic ansatz and are then able to identify the interface between A and B as the main cause for this nonlinear dependence. We argue that, finally, for very large times the here temporarily dependent diffusion "constant" goes like t-1/3 to a constant asymptotic value D¿. The latter is calculated approximately by employing the effective-medium approximation and by fitting the simulation data to the said time dependence.
Resumo:
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 1820 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Resumo:
Background Transketolase-like 1 (TKTL1) induces glucose degradation through anaerobic pathways, even in presence of oxygen, favoring the malignant aerobic glycolytic phenotype characteristic of tumor cells. As TKTL1 appears to be a valid biomarker for cancer prognosis, the aim of the current study was to correlate its expression with tumor stage, probability of tumor recurrence and survival, in a series of colorectal cancer patients. Methodolody/Principal Findings Tumor tissues from 63 patients diagnosed with colorectal cancer at different stages of progression were analyzed for TKTL1 by immunohistochemistry. Staining was quantified by computational image analysis, and correlations between enzyme expression, local growth, lymph-node involvement and metastasis were assessed. The highest values for TKTL1 expression were detected in the group of stage III tumors, which showed significant differences from the other groups (Kruskal-Wallis test, P = 0.000008). Deeper analyses of T, N and M classifications revealed a weak correlation between local tumor growth and enzyme expression (Mann-Whitney test, P = 0.029), a significant association of the enzyme expression with lymph-node involvement (Mann-Whitney test, P = 0.0014) and a significant decrease in TKTL1 expression associated with metastasis (Mann-Whitney test, P = 0.0004). Conclusions/Significance To our knowledge, few studies have explored the association between variations in TKTL1 expression in the primary tumor and metastasis formation. Here we report downregulation of enzyme expression when metastasis appears, and a correlation between enzyme expression and regional lymph-node involvement in colon cancer. This finding may improve our understanding of metastasis and lead to new and more efficient therapies against cancer.
Resumo:
We study new supergravity solutions related to large-N c N=1 supersymmetric gauge field theories with a large number N f of massive flavors. We use a recently proposed framework based on configurations with N c color D5 branes and a distribution of N f flavor D5 branes, governed by a function N f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of x ≡ N f /N c . In the IR region, the solution smoothly approaches the deformed Maldacena-Núñez solution. In the UV region it approaches a linear dilaton solution. For x < 2 the gauge coupling β g function computed holographically is negative definite, in the UV approaching the NSVZ β function with anomalous dimension γ 0 = −1/2 (approaching − 3/(32π 2)(2N c − N f )g 3)), and with β g → −∞ in the IR. For x = 2, β g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x > 2 describe a"Seiberg dual" picture where N f − 2N c flips sign.
Resumo:
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18-20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
There is a high degree of sex-typing in young children's occupational aspirations and this has consequences for subsequent occupational segregation. Sociologists typically attribute early sex-differences in occupational preferences to gender socialization. Yet we still know surprisingly little about the mechanisms involved in the intergenerational transmission of sex-typical preferences and there is considerable theoretical controversy regarding the role of individual agency in the process of preference formation. This study analyzes the determinants of sex-typed occupational aspirations amongst British children aged between 11 and 15. We specify different mechanisms involved in the transmission of sex-typical preferences and propose an innovative definition of individual agency that is anchored in observable psychological traits linked to self-direction. This allows us to perform a simultaneous test of socialization and agency predictors of occupational sex-typing. We find that parental influences on occupational preferences operate mainly through three distinctive channels: 1) the effect that parental socio-economic resources have on the scope of children's occupational aspirations, 2) children's direct imitation of parental occupations, and 3) children's learning of sex-typed roles via the observation of parental behavior. We also find a strong net effect of children's own psychological predispositions -self-esteem in particular- on the incidence of sex-typical occupational preferences. Yet large differences in the occupational aspirations of girls and boys remain unexplained.