17 resultados para GAIN ENHANCEMENT
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Oxidation of amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition were investigated. Their hydrogen content has a great influence on the oxidation rate at low temperature. When the mass gain is recorded during a heating ramp in dry air, an oxidation process at low temperature is identified with an onset around 250°C. This temperature onset is similar to that of hydrogen desorption. It is shown that the oxygen uptake during this process almost equals the number of hydrogen atoms present in the nanoparticles. To explain this correlation, we propose that oxidation at low temperature is triggered by the process of hydrogen desorption
Resumo:
Subjective language detection is one of the most important challenges in Sentiment Analysis. Because of the weight and frequency in opinionated texts, adjectives are considered a key piece in the opinion extraction process. These subjective units are more and more frequently collected in polarity lexicons in which they appear annotated with their prior polarity. However, at the moment, any polarity lexicon takes into account prior polarity variations across domains. This paper proves that a majority of adjectives change their prior polarity value depending on the domain. We propose a distinction between domain dependent and romain independent adjectives. Moreover, our analysis led us to propose a further classification related to subjectivity degree: constant, mixed and highly subjective adjectives. Following this classification, polarity values will be a better support for Sentiment Analysis.
Resumo:
Welfare is a rather vague term whose meaning depends on ideology, values andjudgments. Material resources are just means to enhance people s well-being, butgrowth of the Gross Domestic Production is still the standard measure of thesuccess of a society. Fortunately, recent advances in measuring social performanceinclude health, education and other social outcomes. Because what we measureaffects what we do it is hoped that social policies will change. The movementHealth in all policies and its associated Health Impact Assessment methodologywill contribute to it. The task consists of designing transversal policies thatconsider health and other welfare goals, the short term and long-term implicationsand intergenerational redistributions of resources. As long as marginalproductivity on health outside the healthcare system is higher than inside it,efficiency needs cross-sectoral policies. And fairness needs them even more,because in order to reduce social inequalities in health, a wide social and politicalresponse is needed.Unless we reduce the well-documented inefficiencies in our current health caresystems the welfare states will fail to consolidate and the overall economic wellbeingcould be in serious trouble. In this article we sketched some policy solutionssuch as pricing according to net benefits of innovation and public encouragementof radical innovation besides the small type incremental and market-ledinnovation. We proposed an independent agency, the National Institute forWelfare Enhancement to guarantee long term fair and efficient social policies inwhich health plays a central role.
Resumo:
Kahneman and Tversky asserted a fundamental asymmetry between gains and losses, namely a reflection effect which occurs when an individual prefers a sure gain of $ pz to anuncertain gain of $ z with probability p, while preferring an uncertain loss of $z with probability p to a certain loss of $ pz.We focus on this class of choices (actuarially fair), and explore the extent to which thereflection effect, understood as occurring at a range of wealth levels, is compatible with single-self preferences.We decompose the reflection effect into two components, a probability switch effect,which is compatible with single-self preferences, and a translation effect, which is not. To argue the first point, we analyze two classes of single-self, nonexpected utility preferences, which we label homothetic and weakly homothetic. In both cases, we characterize the switch effect as well as the dependence of risk attitudes on wealth.We also discuss two types of utility functions of a form reminiscent of expected utility but with distorted probabilities. Type I always distorts the probability of the worst outcome downwards, yielding attraction to small risks for all probabilities. Type II distorts low probabilities upwards, and high probabilities downwards, implying risk aversion when the probability of the worst outcome is low. By combining homothetic or weak homothetic preferences with Type I or Type II distortion functions, we present four explicit examples: All four display a switch effect and, hence, a form of reflection effect consistent a single self preferences.
Resumo:
Arrays of vertically aligned ZnO:Cl/ZnO core-shell nanowires were used to demonstrate that the control of the coaxial doping profile in homojunction nanostructures can improve their surface charge carrier transfer while conserving potentially excellent transport properties. It is experimentally shown that the presence of a ZnO shell enhances the photoelectrochemical properties of ZnO:Cl nanowires up to a factor 5. Likewise, the ZnO shell promotes the visible photoluminescence band in highly conducting ZnO:Cl nanowires. These lines of evidence are associated with the increase of the nanowires" surface depletion layer
Resumo:
Rib-loaded waveguides containing Er3+-coupled Si nanoclusters (Si-nc) have been produced to observe optical gain at 1535 nm. The presence ofSi-nc strongly improves the efficiency ofEr 3+ excitation but may introduce optical loss mechanisms, such as Mie scattering and confined carrier absorption. Losses strongly affect the possibility of obtaining positive optical gain. Si-nc-related losses have been minimized to 1 dB/cm by lowering the annealing time ofthe Er3+-doped silicon-rich oxide deposited by reactive magnetron cosputtering. Photoluminescence (PL) and lifetime measurements show that all Er3+ ions are optically active while those that can be excited at high pump rates via Si-nc are only a small percentage. Er3+ absorption cross section is found comparable to that ofEr 3+ in SiO 2.However, dependence on the effective refractive index has been found. In pump-probe measurements, it is shown how the detrimental role ofconfined carrier absorption can be attenuated by reducing the annealing time. A maximum signal enhancement ofabout 1.34 at 1535 nm was measured.
Resumo:
The finite-size-dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two-body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well as atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.
Resumo:
The frequency dynamics of gain-switched singlemode semiconductor lasers subject to optical injection is investigated. The requirements for low time jitter and reduced frequency chirp operation are studied as a function of the frequency mismatch between the master and slave lasers. Suppression of the power overshoot, typical during gain-switched operation, can be achieved for selected frequency detunings.
Resumo:
The intensity correlation functions C(t) for the colored-gain-noise model of dye lasers are analyzed and compared with those for the loss-noise model. For correlation times ¿ larger than the deterministic relaxation time td, we show with the use of the adiabatic approximation that C(t) values coincide for both models. For small correlation times we use a method that provides explicit expressions of non-Markovian correlation functions, approximating simultaneously short- and long-time behaviors. Comparison with numerical simulations shows excellent results simultaneously for short- and long-time regimes. It is found that, when the correlation time of the noise increases, differences between the gain- and loss-noise models tend to disappear. The decay of C(t) for both models can be described by a time scale that approaches the deterministic relaxation time. However, in contrast with the loss-noise model, a secondary time scale remains for large times for the gain-noise model, which could allow one to distinguish between both models.
Resumo:
An exact analytical expression for the effective diffusion coefficient of an overdamped Brownian particle in a tilted periodic potential is derived for arbitrary potentials and arbitrary strengths of the thermal noise. Near the critical tilt (threshold of deterministic running solutions) a scaling behavior for weak thermal noise is revealed and various universality classes are identified. In comparison with the bare (potential-free) thermal diffusion, the effective diffusion coefficient in a critically tilted periodic potential may be, in principle, arbitrarily enhanced. For a realistic experimental setup, an enhancement by 14 orders of magnitude is predicted so that thermal diffusion should be observable on a macroscopic scale at room temperature.
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation
Resumo:
Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +- 0.58 (m +- SE) and 1.00 +- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.
Resumo:
The dynamics of three-dimensional scroll rings with spatiotemporal random excitability is investigated numerically using the FitzHugh-Nagumo model. Depending on the correlation time and length scales of the fluctuations, the lifetime of the ring filament is enlarged and a resonance effect between the time scale of the scroll ring and the time correlation of the noise is observed. Numerical results are interpreted in terms of a simplified stochastic model derived from the kinematical equations for three-dimensional excitable waves.