52 resultados para Fuzzy Vector lattices
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Vagueness and high dimensional space data are usual features of current data. The paper is an approach to identify conceptual structures among fuzzy three dimensional data sets in order to get conceptual hierarchy. We propose a fuzzy extension of the Galois connections that allows to demonstrate an isomorphism theorem between fuzzy sets closures which is the basis for generating lattices ordered-sets
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.
Resumo:
We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.
Resumo:
We give a case-free proof that the lattice of noncrossing partitions associated to any finite real reflection group is EL-shellable. Shellability of these lattices was open for the groups of type Dn and those of exceptional type and rank at least three.
Resumo:
El presente proyecto tenía como objetivo final el desarrollo de un sistema de control basado en Lógica Fuzzy que permita que el proceso de secado tenga una regulación continua y con una menor dependencia de la experiencia del personal experto, evitando además la formación de encostrado. Asimismo, se plantearon una serie de objetivos parciales, cuya consecución permitiría, además de alcanzar el objetivo final descrito, obtener un conocimiento científico adicional. Por ello, a continuación se resumen los resultados en relación con los objetivos parciales propuestos. Como paso previo, antes de abordar los objetivos planteados se diseñó y construyó un equipo experimental de secado, donde se controló de forma precisa la temperatura, la humedad relativa y la velocidad del aire.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Mejora diagnóstica de hepatopatías de afectación difusa mediante técnicas de inteligencia artificial
Resumo:
The automatic diagnostic discrimination is an application of artificial intelligence techniques that can solve clinical cases based on imaging. Diffuse liver diseases are diseases of wide prominence in the population and insidious course, yet early in its progression. Early and effective diagnosis is necessary because many of these diseases progress to cirrhosis and liver cancer. The usual technique of choice for accurate diagnosis is liver biopsy, an invasive and not without incompatibilities one. It is proposed in this project an alternative non-invasive and free of contraindications method based on liver ultrasonography. The images are digitized and then analyzed using statistical techniques and analysis of texture. The results are validated from the pathology report. Finally, we apply artificial intelligence techniques as Fuzzy k-Means or Support Vector Machines and compare its significance to the analysis Statistics and the report of the clinician. The results show that this technique is significantly valid and a promising alternative as a noninvasive diagnostic chronic liver disease from diffuse involvement. Artificial Intelligence classifying techniques significantly improve the diagnosing discrimination compared to other statistics.
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria delsConjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics espotencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funciódensitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps queles distribucions de probabilitat quàntiques
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
L'objectiu d'aquest projecte ha estat el desenvolupament d'algorismes biològicament inspirats per a l'olfacció artificial. Per a assolir-lo ens hem basat en el paradigma de les màquines amb suport vectorial. Hem construit algoritmes que imitaven els processos computacionals dels diferents sistemes que formen el sistema olfactiu dels insectes, especialment de la llagosta Schistocerca gregaria. Ens hem centrat en el lòbuls de les antenes, i en el cos fungiforme. El primer està considerat un dispositiu de codificació de les olors, que a partir de la resposta temporal dels receptors olfactius a les antenes genera un patró d'activació espaial i temporal. Quant al cos fungiforme es considera que la seva funció és la d'una memòria per als olors, així com un centre per a la integració multi-sensorial. El primer pas ha estat la construcció de models detallats dels dos sistemes. A continuació, hem utilitzat aquests models per a processar diferents tipus de senyals amb l'objectiu de abstraure els principis computacionals subjacents. Finalment, hem avaluat les capacitats d'aquests models abstractes, i els hem utilitzat per al processat de dades provinents de sensors de gasos. Els resultats mostren que el models abstractes tenen millor comportament front el soroll i més capacitat d'emmagatzematge de records que altres models més clàssics, com ara les memòries associatives de Hopfield o fins i tot en determinades circumstàncies que les mateixes Support Vector Machines.
Resumo:
In 2000 the European Statistical Office published the guidelines for developing theHarmonized European Time Use Surveys system. Under such a unified framework,the first Time Use Survey of national scope was conducted in Spain during 2002–03. The aim of these surveys is to understand human behavior and the lifestyle ofpeople. Time allocation data are of compositional nature in origin, that is, they aresubject to non-negativity and constant-sum constraints. Thus, standard multivariatetechniques cannot be directly applied to analyze them. The goal of this work is toidentify homogeneous Spanish Autonomous Communities with regard to the typicalactivity pattern of their respective populations. To this end, fuzzy clustering approachis followed. Rather than the hard partitioning of classical clustering, where objects areallocated to only a single group, fuzzy method identify overlapping groups of objectsby allowing them to belong to more than one group. Concretely, the probabilistic fuzzyc-means algorithm is conveniently adapted to deal with the Spanish Time Use Surveymicrodata. As a result, a map distinguishing Autonomous Communities with similaractivity pattern is drawn.Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance
Resumo:
The method of extracting effective atomic orbitals and effective minimal basis sets from molecular wave function characterizing the state of an atom in a molecule is developed in the framework of the "fuzzy" atoms. In all cases studied, there were as many effective orbitals that have considerable occupation numbers as orbitals in the classical minimal basis. That is considered to be of high conceptual importance
Resumo:
The total energy of molecule in terms of 'fuzzy atoms' presented as sum of one- and two-atomic energy components is described. The divisions of three-dimensional physical space into atomic regions exhibit continuous transition from one to another. The energy components are on chemical energy scale according to proper definitions. The Becke's integration scheme and weight function determines realization of method which permits effective numerical integrations
Resumo:
Standard practice in Bayesian VARs is to formulate priors on the autoregressive parameters, but economists and policy makers actually have priors about the behavior of observable variables. We show how this kind of prior can be used in a VAR under strict probability theory principles. We state the inverse problem to be solved and we propose a numerical algorithm that works well in practical situations with a very large number of parameters. We prove various convergence theorems for the algorithm. As an application, we first show that the results in Christiano et al. (1999) are very sensitive to the introduction of various priors that are widely used. These priors turn out to be associated with undesirable priors on observables. But an empirical prior on observables helps clarify the relevance of these estimates: we find much higher persistence of output responses to monetary policy shocks than the one reported in Christiano et al. (1999) and a significantly larger total effect.