2 resultados para Fluidised bed combustion
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We derive analytical expressions for the propagation speed of downward combustion fronts of thin solid fuels with a background flow initially at rest. The classical combustion model for thin solid fuels that consists of five coupled reaction-convection-diffusion equations is here reduced into a single equation with the gas temperature as the single variable. For doing so we apply a two-zone combustion model that divides the system into a preheating region and a pyrolyzing region. The speed of the combustion front is obtained after matching the temperature and its derivative at the location that separates both regions.We also derive a simplified version of this analytical expression expected to be valid for a wide range of cases. Flame front velocities predicted by our analyticalexpressions agree well with experimental data found in the literature for a large variety of cases and substantially improve the results obtained from a previous well-known analytical expression
Resumo:
The relation between the equivalent roughness and different grain size percentiles of the sediment in gravel-bed rivers was determined under the hypothesis that the vertical distribution of the flow velocity follows a logarithmic law. A set of 954 data points was selected from rivers with gravel size sediment or larger, with a non-sinuous alignment and free of vegetation or obstacles. According to the results, the ks roughness is equivalent to approximately 2.4D90, 2.8D84, and 6.1D50. No correlation was detected between the sediment sorting and the sediment mobility index on one hand, and, on the other, the coefficient of proportionality of each grain size percentile.