3 resultados para Flatness

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We run experiments on English Auctions where the bidders already own a part (toehold) ofthe good for sale. The theory predicts a very strong effect of even small toeholds, however wefind the effects are not so strong in the lab. We explain this by analyzing the flatness of thepayoff functions, which leads to relatively costless deviations from the equilibrium strategies.We find that a levels of reasoning model explains the results better than the Nash equilibrium.Moreover, we find that although big toeholds can be effective, the cost to acquire them mightbe higher than the strategic benefit they bring. Finally our results show that in general theseller s revenues fall when the playing field is uneven.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical aberration due to the nonflatness of spatial light modulators used in holographic optical tweezers significantly deteriorates the quality of the trap and may easily prevent stable trapping of particles. We use a Shack-Hartmann sensor to measure the distorted wavefront at the modulator plane; the conjugate of this wavefront is then added to the holograms written into the display to counteract its own curvature and thus compensate the optical aberration of the system. For a Holoeye LC-R 2500 reflective device, flatness is improved from 0.8¿ to ¿/16 (¿=532 nm), leading to a diffraction-limited spot at the focal plane of the microscope objective, which makes stable trapping possible. This process could be fully automated in a closed-loop configuration and would eventually allow other sources of aberration in the optical setup to be corrected for.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time required to image large samples is an important limiting factor in SPM-based systems. In multiprobe setups, especially when working with biological samples, this drawback can make impossible to conduct certain experiments. In this work, we present a feedfordward controller based on bang-bang and adaptive controls. The controls are based in the difference between the maximum speeds that can be used for imaging depending on the flatness of the sample zone. Topographic images of Escherichia coli bacteria samples were acquired using the implemented controllers. Results show that to go faster in the flat zones, rather than using a constant scanning speed for the whole image, speeds up the imaging process of large samples by up to a 4x factor.