22 resultados para Finite-Difference Method
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.
Resumo:
The study of the thermal behavior of complex packages as multichip modules (MCM¿s) is usually carried out by measuring the so-called thermal impedance response, that is: the transient temperature after a power step. From the analysis of this signal, the thermal frequency response can be estimated, and consequently, compact thermal models may be extracted. We present a method to obtain an estimate of the time constant distribution underlying the observed transient. The method is based on an iterative deconvolution that produces an approximation to the time constant spectrum while preserving a convenient convolution form. This method is applied to the obtained thermal response of a microstructure as analyzed by finite element method as well as to the measured thermal response of a transistor array integrated circuit (IC) in a SMD package.
Resumo:
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.
Resumo:
Per a altes freqüències, les connexions poden tenir un paper rellevant. Atès que la velocitat de propagació dels senyals electromagnètics, c, en el cable no és infinita, el voltatge i el corrent al llarg del cable varien amb el temps. Per tant, amb l’objectiu de reproduir el comportament elèctric de dispositius nanoelectrònics a freqüències de THz, en aquest treball hem estudiat la regió activa del dispositiu nanoelectrònic i les seves connexions, en un sistema global complex. Per a aquest estudi hem utilitzat un nou concepte de dispositiu anomenat Driven Tunneling Device (DTD). Per a les connexions, hem plantejat el problema a partir de tot el conjunt de les equacions de Maxwell, ja que per a les freqüències i longituds de cable considerats, la contribució del camp magnètic és també important. En particular, hem suposat que la propagació que és dóna en el cable és una propagació transversal electromagnètica (TEM). Un cop definit el problema hem desenvolupat un programa en llenguatge FORTRAN que amb l'algoritme de diferències finites soluciona el sistema global. La solució del sistema global s'ha aplicat a una configuració particular de DTD com a multiplicador de freqüència per tal de discutir quins paràmetres de les connexions permet maximitzar la potència real que pot donar el DTD.
Resumo:
Report for the scientific sojourn carried out in the International Center for Numerical Methods in Engineering (CIMNE) –state agency – from February until November 2007. The work within the project Technology innovation in underground construction can be grouped into the following tasks: development of the software for modelling underground excavation based on the discrete element method - the numerical algorithms have been implemented in the computer programs and applied to simulation of excavation using roadheaders and TBM-s -; coupling of the discrete element method with the finite element method; development of the numerical model of rock cutting taking into account of wear of rock cutting tools -this work considers a very important factor influencing effectiveness of underground works -.
Resumo:
A study of the main types of coatings and its processes that modern industry commonly apply to prevent to the corrosion due to the environmental effects to energetic market pipelines have been done. Extracting main time and temperature range values, coating heat treatment recreation have been applied to x65 pipelines steel grade samples obtained from a pipe which was formed using UOE forming process. Experimental tensile tests and Charpy V‐Notch Impact test have been carried out for a deeply knowledge of the influence on the steel once this recreations are applied. The Yield Strength and toughness have been improved despite lower values in rupture strain and ductile‐brittle temperature transition have been obtained. Finite Element Method have been applied to simulate the entirely pipe cold bending process to predict the mechanical properties and behaviour of the pipe made from x65 steel grade under different conditions.
Resumo:
We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.
Resumo:
Aquest projecte consisteix en aplicar el càlcul no lineal en la modelització volumètricanumèrica de l’estructura del sistema de descàrrega d’una columna del claustre de lacatedral de Girona mitjançant el mètode dels elements finits. A la Universitat de Gironas’ha fet diferents estudis del claustre de la catedral de Girona però sempre simulant uncomportament lineal de les característiques dels materials. El programa utilitzat és la versió docent del programa ANSYS disponible al Dept.d’EMCI i l’element emprat ha sigut el SOLID65. Aquest element permet introduircaracterístiques de no linealitat en els models i és adequat per a anàlisi no lineald’elements com la pedra de Girona
Resumo:
L’objectiu d’aquest treball és desenvolupar una metodologia per realitzar l’anàlisiparamètrica de l’assaig de compressió d’un panell de material compost rigiditzat ambtres nervis. En primer lloc és necessari desenvolupar un sistema automatitzat per generar i avaluar el conjunt de parametritzacions. A continuació, s’estudiaran quines variables d’estat són les més adequades per representar el vinclament local, la flexió global, la càrrega crítica de desestabilització i l’índex de fallada en l’anàlisi paramètrica. La modelització amb el mètode dels elements finits serveix per simular l’assaig a compressió del panell. La simulació es realitza mitjançant un càlcul no lineal, per estudiar la desestabilització i els fenòmens no lineals que pateix el panell. L’estudi es complementa amb una anàlisi modal i una anàlisi lineal