5 resultados para Fenótipo MDR
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no permet ajustar per efectes principals ni per variables confusores. En aquest article il•lustrem les limitacions de l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies parametriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La nova metodologia s’il•lustra amb dades de l’Estudi Espanyol de Cancer de Bufeta.
Resumo:
We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR) with Model-Based MDR (MB-MDR). We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR), which is a generalization of Multifactor Dimensionality Reduction (MDR) to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main) effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM) is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC), an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS). This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information.
Resumo:
En aquest Treball de Final de Grau s’exposen els resultats de l’anàlisi de les dades genètiques del projecte EurGast2 "Genetic susceptibility, environmental exposure and gastric cancer risk in an European population”, estudi cas‐control niat a la cohort europea EPIC “European Prospective lnvestigation into Cancer and Nutrition”, que té per objectiu l’estudi dels factors genètics i ambientals associats amb el risc de desenvolupar càncer gàstric (CG). A partir de les dades resultants de l’estudi EurGast2, en el què es van analitzar 1.294 SNPs en 365 casos de càncer gàstric i 1.284 controls en l’anàlisi Single SNP previ, la hipòtesi de partida del present Treball de Final de Grau és que algunes variants amb un efecte marginal molt feble, però que conjuntament amb altres variants estarien associades al risc de CG, podrien no haver‐se detectat. Així doncs, l’objectiu principal del projecte és la identificació d’interaccions de segon ordre entre variants genètiques de gens candidats implicades en la carcinogènesi de càncer gàstric. L’anàlisi de les interaccions s’ha dut a terme aplicant el mètode estadístic Model‐based Multifactor Dimensionality Reduction Method (MB‐MDR), desenvolupat per Calle et al. l’any 2008 i s’han aplicat dues metodologies de filtratge per seleccionar les interaccions que s’exploraran: 1) filtratge d’interaccions amb un SNP significatiu en el Single SNP analysis i 2) filtratge d’interaccions segons la mesura Sinèrgia. Els resultats del projecte han identificat 5 interaccions de segon ordre entre SNPs associades significativament amb un major risc de desenvolupar càncer gàstric, amb p‐valor inferior a 10‐4. Les interaccions identificades corresponen a interaccions entre els gens MPO i CDH1, XRCC1 i GAS6, ADH1B i NR5A2 i IL4R i IL1RN (que s’ha validat en les dues metodologies de filtratge). Excepte CDH1, cap altre d’aquests gens s’havia associat significativament amb el CG o prioritzat en les anàlisis prèvies, el que confirma l’interès d’analitzar les interaccions genètiques de segon ordre. Aquestes poden ser un punt de partida per altres anàlisis destinades a confirmar gens putatius i a estudiar a nivell biològic i molecular els mecanismes de carcinogènesi, i orientades a la recerca de noves dianes terapèutiques i mètodes de diagnosi i pronòstic més eficients.
Resumo:
Background: Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn’s disease. Results: In the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s disease (CD) data. Conclusions: Our software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn’s disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.
Resumo:
Lamellarins are a large family of marine alkaloids with potential anticancer activity that have been isolated from diverse marine organisms, mainly ascidians and sponges. All lamellarins feature a 3,4-diarylpyrrole system. Pentacyclic lamellarins, whose polyheterocyclic system has a pyrrole core, are the most active compounds. Some of these alkaloids are potently cytotoxic to various tumor cell lines. To date, Lam-D and Lam-H have been identified as lead compounds for the inhibition of topoisomerase I and HIV-1 integrase, respectively nuclear enzymes which are over-expressed in deregulation disorders. Moreover,these compounds have been reported for their efficacy in treatment of multi-drug resistant (MDR) tumors cells without mediated drug efflux, as well as their immunomodulatory activity and selectivity towards melanoma cell lines. This article is an overview of recent literature on lamellarins, encompassing their isolation, recent synthetic strategies for their total synthesis, the preparation of their analogs, studies on their mechanisms of action, and their structure-activity relationships (SAR).