7 resultados para FOOD ANTICIPATORY ACTIVITY
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Interactions between yellow-legged Larus cachinnans and Audouin´s Larus audouinii gulls and fisheries operating around the Chafarinas Islands, located 4.5 km off the Moroccan Mediterranean coast, are reviewed. At the Chafarinas archipelago two distinct types of fisheries operate: trawlers and purse seines. Gulls take advantage of both fisheries. They scavenge trawler discards and congregate around shoals of fish attracted to the surface by the purse-seine lamps. When both trawlers and purse-seine boats are in operation, the diet of both gull species is similar, with epipelagic fish accounting for over 60% of the biomass, partially collected in association with the purse-seine fishery. When only trawlers operated yellow-legged gulls, but not Audouin´s gulls, augmented their diet mainly with human waste from refuse dumps, suggesting that competition for food between the two species is mainly limited to the periods when resources made available by fishery activities are abundant. Likewise, when only trawlers operated, there was an increase in the predation pressure on eggs and chicks of Audouin´s gulls. In particular, during the week of celebrations for the holy lamb festival when neither fishery operated, egg losses of Audouin´s gull increased dramatically, suggesting that severe food shortage caused by the cessation of fishing can result in an increased predation pressure by yellow-legged gulls, affecting Audouin´s gull productivity. These results suggest a novel socio-ecological link between gulls, fisheries and local feasts.
Resumo:
C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identify- ing it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential dif- ferent biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that ( )- C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.
Resumo:
C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identify- ing it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential dif- ferent biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that ( )- C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.
Resumo:
Carnitine palmitoyltransferase-1 (CPT-1) liver isoform or CPT-1a is implicated in CNS control of food intake. However, the exact brain nucleus site(s) in mediating this action of CPT-1a has not been identified. In this report, we assess the role of CPT-1a in hypothalamic ventromedial nucleus (VMN). We stereotaxically injected an adenoviral vector containing CPT-1a coding sequence into the VMN of rats to induce overexpression and activation of CPT-1a. The VMN-selective activation of CPT-1a induced orexigenic effect, suggesting CPT-1a in the VMN is involved in the central control of feeding. Intracerebroventricular administration of etomoxir, a CPT-1 inhibitor, decreases food intake. Importantly, in the animals with VMN-overexpression of a CPT-1a mutant that antagonizes the CPT-1 inhibition by etomoxir, the anorectic response to etomoxir was attenuated. This suggests that VMN is involved in mediating the anorectic effect of central inhibition of CPT-1a. In contrast, Arc overexpression of the mutant did not alter etomoxir-induced inhibition of food intake, suggesting that Arc CPT-1a does not play significant roles in this anorectic action. Furthermore, in the VMN, CPT-1a appears to act downstream of hypothalamic malonyl-CoA action of feeding. Finally, we show that in the VMN, CPT-1 activity altered in concert with fasting and refeeding states, supporting a physiological role of CPT-1a in mediating the control of feeding. Taking together, CPT-1a in the hypothalamic VMN appears to play an important role in the central control of food intake. VMN-selective modulation of CPT-1a activity may therefore be a promising strategy in controlling food intake and maintaining normal body weight.
Resumo:
The effect of different food matrices on the metabolism and excretion of polyphenols is uncertain. The objective of the study was to evaluate the possible effect of milk on the excretion of (2)-epicatechin metabolites from cocoa powder after its ingestion with and without milk. Twenty-one volunteers received the following three test meals each in a randomised cross-over design with a 1-week interval between meals: (1) 250 ml whole milk as a control; (2) 40 g cocoa powder dissolved in 250 ml whole milk (CC-M); (3) 40 g cocoa powder dissolved in 250 ml water (CC-W). Urine was collected before consumption and during the 0-6, 6-12 and 12-24 h periods after consumption. (2)-Epicatechin metabolite excretion was measured using liquid chromatography-MS. One (2)-epicatechin glucuronide and three (2)-epicatechin sulfates were detected in urine excreted after the intake of the two cocoa beverages (CC-M and CC-W). The results show that milk does not significantly affect the total amount of metabolites excreted in urine. However, differences in metabolite excretion profiles were observed; there were changes in the glucuronide and sulfate excretion rates, and the sulfation position between the period of excretion and the matrix. The matrix in which polyphenols are consumed can affect their metabolism and excretion, and this may affect their biological activity. Thus, more studies are needed to evaluate the effect of these different metabolite profiles on the body.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.