29 resultados para Explicit method, Mean square stability, Stochastic orthogonal Runge-Kutta, Chebyshev method

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface topography and light scattering were measured on 15 samples ranging from those having smooth surfaces to others with ground surfaces. The measurement techniques included an atomic force microscope, mechanical and optical profilers, confocal laser scanning microscope, angle-resolved scattering, and total scattering. The samples included polished and ground fused silica, silicon carbide, sapphire, electroplated gold, and diamond-turned brass. The measurement instruments and techniques had different surface spatial wavelength band limits, so the measured roughnesses were not directly comparable. Two-dimensional power spectral density (PSD) functions were calculated from the digitized measurement data, and we obtained rms roughnesses by integrating areas under the PSD curves between fixed upper and lower band limits. In this way, roughnesses measured with different instruments and techniques could be directly compared. Although smaller differences between measurement techniques remained in the calculated roughnesses, these could be explained mostly by surface topographical features such as isolated particles that affected the instruments in different ways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The semiclassical Wigner-Kirkwood ̄h expansion method is used to calculate shell corrections for spherical and deformed nuclei. The expansion is carried out up to fourth order in ̄h. A systematic study of Wigner-Kirkwood averaged energies is presented as a function of the deformation degrees of freedom. The shell corrections, along with the pairing energies obtained by using the Lipkin-Nogami scheme, are used in the microscopic-macroscopic approach to calculate binding energies. The macroscopic part is obtained from a liquid drop formula with six adjustable parameters. Considering a set of 367 spherical nuclei, the liquid drop parameters are adjusted to reproduce the experimental binding energies, which yields a root mean square (rms) deviation of 630 keV. It is shown that the proposed approach is indeed promising for the prediction of nuclear masses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The author studies the error and complexity of the discrete random walk Monte Carlo technique for radiosity, using both the shooting and gathering methods. The author shows that the shooting method exhibits a lower complexity than the gathering one, and under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an O(n log n) complexity. The author gives and compares three unbiased estimators for each method, and obtains closed forms and bounds for their variances. The author also bounds the expected value of the mean square error (MSE). Some of the results obtained are also shown

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of classical Itô's calculus we decompose option prices asthe sum of the classical Black-Scholes formula with volatility parameterequal to the root-mean-square future average volatility plus a term dueby correlation and a term due to the volatility of the volatility. Thisdecomposition allows us to develop first and second-order approximationformulas for option prices and implied volatilities in the Heston volatilityframework, as well as to study their accuracy. Numerical examples aregiven.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe the results of a simulation study performed to elucidate the robustness of the Lindstrom and Bates (1990) approximation method under non-normality of the residuals, under different situations. Concerning the fixed effects, the observed coverage probabilities and the true bias and mean square error values, show that some aspects of this inferential approach are not completely reliable. When the true distribution of the residuals is asymmetrical, the true coverage is markedly lower than the nominal one. The best results are obtained for the skew normal distribution, and not for the normal distribution. On the other hand, the results are partially reversed concerning the random effects. Soybean genotypes data are used to illustrate the methods and to motivate the simulation scenarios

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyse, using Monte Carlo simulation, the possible consequences of incorrect assumptions on the true structure of the random effects covariance matrix and the true correlation pattern of residuals, over the performance of an estimation method for nonlinear mixed models. The procedure under study is the well known linearization method due to Lindstrom and Bates (1990), implemented in the nlme library of S-Plus and R. Its performance is studied in terms of bias, mean square error (MSE), and true coverage of the associated asymptotic confidence intervals. Ignoring other criteria like the convenience of avoiding over parameterised models, it seems worst to erroneously assume some structure than do not assume any structure when this would be adequate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a method for computing JPEG quantization matrices for a given mean square error or PSNR. Then, we employ our method to compute JPEG standard progressive operation mode definition scripts using a quantization approach. Therefore, it is no longer necessary to use a trial and error procedure to obtain a desired PSNR and/or definition script, reducing cost. Firstly, we establish a relationship between a Laplacian source and its uniform quantization error. We apply this model to the coefficients obtained in the discrete cosine transform stage of the JPEG standard. Then, an image may be compressed using the JPEG standard under a global MSE (or PSNR) constraint and a set of local constraints determined by the JPEG standard and visual criteria. Secondly, we study the JPEG standard progressive operation mode from a quantization based approach. A relationship between the measured image quality at a given stage of the coding process and a quantization matrix is found. Thus, the definition script construction problem can be reduced to a quantization problem. Simulations show that our method generates better quantization matrices than the classical method based on scaling the JPEG default quantization matrix. The estimation of PSNR has usually an error smaller than 1 dB. This figure decreases for high PSNR values. Definition scripts may be generated avoiding an excessive number of stages and removing small stages that do not contribute during the decoding process with a noticeable image quality improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a Bayesian approach to the design of transmit prefiltering matrices in closed-loop schemes robust to channel estimation errors. The algorithms are derived for a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. Two different optimizationcriteria are analyzed: the minimization of the mean square error and the minimization of the bit error rate. In both cases, the transmitter design is based on the singular value decomposition (SVD) of the conditional mean of the channel response, given the channel estimate. The performance of the proposed algorithms is analyzed,and their relationship with existing algorithms is indicated. As withother previously proposed solutions, the minimum bit error rate algorithmconverges to the open-loop transmission scheme for very poor CSI estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative performance analysis of four geolocation methods in terms of their theoretical root mean square positioning errors is provided. Comparison is established in two different ways: strict and average. In the strict type, methods are examined for a particular geometric configuration of base stations(BSs) with respect to mobile position, which determines a givennoise profile affecting the respective time-of-arrival (TOA) or timedifference-of-arrival (TDOA) estimates. In the average type, methodsare evaluated in terms of the expected covariance matrix ofthe position error over an ensemble of random geometries, so thatcomparison is geometry independent. Exact semianalytical equationsand associated lower bounds (depending solely on the noiseprofile) are obtained for the average covariance matrix of the positionerror in terms of the so-called information matrix specific toeach geolocation method. Statistical channel models inferred fromfield trials are used to define realistic prior probabilities for therandom geometries. A final evaluation provides extensive resultsrelating the expected position error to channel model parametersand the number of base stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we obtain the Maximum LikelihoodEstimator of position in the framework of Global NavigationSatellite Systems. This theoretical result is the basis of a completelydifferent approach to the positioning problem, in contrastto the conventional two-steps position estimation, consistingof estimating the synchronization parameters of the in-viewsatellites and then performing a position estimation with thatinformation. To the authors’ knowledge, this is a novel approachwhich copes with signal fading and it mitigates multipath andjamming interferences. Besides, the concept of Position–basedSynchronization is introduced, which states that synchronizationparameters can be recovered from a user position estimation. Weprovide computer simulation results showing the robustness ofthe proposed approach in fading multipath channels. The RootMean Square Error performance of the proposed algorithm iscompared to those achieved with state-of-the-art synchronizationtechniques. A Sequential Monte–Carlo based method is used todeal with the multivariate optimization problem resulting fromthe ML solution in an iterative way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new, quantitative, inference model for environmental reconstruction (transfer function), based for the first time on the simultaneous analysis of multigroup species, has been developed. Quantitative reconstructions based on palaeoecological transfer functions provide a powerful tool for addressing questions of environmental change in a wide range of environments, from oceans to mountain lakes, and over a range of timescales, from decades to millions of years. Much progress has been made in the development of inferences based on multiple proxies but usually these have been considered separately, and the different numeric reconstructions compared and reconciled post-hoc. This paper presents a new method to combine information from multiple biological groups at the reconstruction stage. The aim of the multigroup work was to test the potential of the new approach to making improved inferences of past environmental change by improving upon current reconstruction methodologies. The taxonomic groups analysed include diatoms, chironomids and chrysophyte cysts. We test the new methodology using two cold-environment training-sets, namely mountain lakes from the Pyrenees and the Alps. The use of multiple groups, as opposed to single groupings, was only found to increase the reconstruction skill slightly, as measured by the root mean square error of prediction (leave-one-out cross-validation), in the case of alkalinity, dissolved inorganic carbon and altitude (a surrogate for air-temperature), but not for pH or dissolved CO2. Reasons why the improvement was less than might have been anticipated are discussed. These can include the different life-forms, environmental responses and reaction times of the groups under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction filters are well known models for signal estimation, in communications, control and many others areas. The classical method for deriving linear prediction coding (LPC) filters is often based on the minimization of a mean square error (MSE). Consequently, second order statistics are only required, but the estimation is only optimal if the residue is independent and identically distributed (iid) Gaussian. In this paper, we derive the ML estimate of the prediction filter. Relationships with robust estimation of auto-regressive (AR) processes, with blind deconvolution and with source separation based on mutual information minimization are then detailed. The algorithm, based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics. Experimental results emphasize on the interest of this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Does Independent Component Analysis (ICA) denature EEG signals? We applied ICA to two groups of subjects (mild Alzheimer patients and control subjects). The aim of this study was to examine whether or not the ICA method can reduce both group di®erences and within-subject variability. We found that ICA diminished Leave-One- Out root mean square error (RMSE) of validation (from 0.32 to 0.28), indicative of the reduction of group di®erence. More interestingly, ICA reduced the inter-subject variability within each group (¾ = 2:54 in the ± range before ICA, ¾ = 1:56 after, Bartlett p = 0.046 after Bonfer- roni correction). Additionally, we present a method to limit the impact of human error (' 13:8%, with 75.6% inter-cleaner agreement) during ICA cleaning, and reduce human bias. These ¯ndings suggests the novel usefulness of ICA in clinical EEG in Alzheimer's disease for reduction of subject variability.