9 resultados para Escherichia-coli Thioredoxin

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ler is a DNA-binding, oligomerizable protein that regulates pathogenicity islands in enterohemorrhagic and enteropathogenic Escherichia coli strains. Ler counteracts the transcriptional silencing effect of H-NS, another oligomerizable nucleoid-associated protein. We studied the oligomerization of Ler in the absence and presence of DNA by atomic force microscopy. Ler forms compact particles with a multimodal size distribution corresponding to multiples of 35 units of Ler. DNA wraps around Ler particles that contain more than 1516 Ler monomers. The resulting shortening of the DNA contour length is in agreement with previous measurements of the length of DNA protected by Ler in footprinting assays. We propose that the repetition unit corresponds to the number of monomers per turn of a tight helical Ler oligomer. While the repressor (H-NS) and anti-repressor (Ler) have similar DNA-binding domains, their oligomerization domains are unrelated. We suggest that the different oligomerization behavior of the two proteins explains the opposite results of their interaction with the same or proximal regions of DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review we highlight recent work that has increased our understanding of the distribution of Shiga toxin-converting phages that can be detected as free phage particles, independently of Shiga toxin-producing bacteria (STEC). Stx phages are a quite diverse group of temperate phages that can be found in their prophage state inserted within the STEC chromosome, but can also be found as phages released from the cell after activation of their lytic cycle. They have been detected in extraintestinal environments such as water polluted with feces from humans or animals, food samples or even in stool samples of healthy individuals. The high persistence of phages to several inactivation conditions makes them suitable candidates for the successful mobilization of stx genes, possibly resulting in the genes reaching a new bacterial genomic background by means of transduction, where ultimately they may be expressed, leading to Stx production. Besides the obvious fact that Stx phages circulating between bacteria can be, and probably are, involved in the emergence of new STEC strains, we review here other possible ways in which free Stx phages could interfere with the detection of STEC in a given sample by current laboratory methods and how to avoid such interference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of a membrane-bound MalE ,B-galactosidase hybrid protein, when induced by growth of Escherichia coli on maltose, leads to inhibition of cell division and eventually a reduced rate of mass increase. In addition, the relative rate of synthesis of outer membrane proteins, but not that of inner membrane proteins, was reduced by about 50%o. Kinetic experiments demonstrated that this reduction coincided with the period of maximum synthesis of the hybrid protein (and another maltose-inducible protein, LamB). The accumulation of this abnormal protein in the envelope therefore appeared specifically to inhibit the synthesis, the assembly of outer membrane proteins, or both, indicating that the hybrid protein blocks some export site or causes the sequestration of some limiting factor(s) involved in the export process. Since the MalE protein is normally located in the periplasm, the results also suggest that the synthesis of periplasmic and outer membrane proteins may involve some steps in common. The reduced rate of synthesis of outer membrane proteins was also accompanied by the accumulation in the envelope of at least one outer membrane protein and at least two inner membrane proteins as higher-molecular-weight forms, indicating that processing (removal of the N-terminal signal sequence) was also disrupted by the presence of the hybrid protein. These results may indicate that the assembly of these membrane proteins is blocked at a relatively late step rather than at the level of primary recognition of some site by the signal sequence. In addition, the results suggest that some step common to the biogenesis of quite different kinds of envelope protein is blocked by the presence of the hybrid protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional housekeeping protein reported to be a target of several covalent modifications in many organisms. In a previous study we showed that enterohemorragic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains secrete GAPDH and that this protein binds to human plasminogen and fibrinogen. Here we report that GAPDH of these pathogens is ADP-ribosylated either in the cytoplasm or in the extracellular medium. GAPDH catalyzes its own modification which involves Cys149 at the active site. ADP-ribosylation of extracellular GAPDH may play important role in the interaction with the host as it has been proposed in other pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concerted action of ppGpp and DksA in transcription has been widely documented. In disparity with this model, phenotypic studies showed that ppGpp and DksA might also have independent and opposing roles in gene expression in Escherichia coli. In this study we used a transcriptomic approach to compare the global transcriptional patterns of gene expression in strains deficient in ppGpp (ppGpp0) and/or DksA ( dksA). Approximately 6 and 7% of all genes were significantly affected by more than twofold in ppGpp- and DksAdeficient strains, respectively, increasing to 13% of all genes in the ppGpp0 dksA strain. Although the data indicate that most of the affected genes were copositively or conegatively regulated by ppGpp and DksA, some genes that were independently and/or differentially regulated by the two factors were found. The large functional group of chemotaxis and flagellum synthesis genes were notably differentially affected, with all genes being upregulated in the DksA-deficient strain but 60% of them being downregulated in the ppGpp-deficient strain. Revealingly, mutations in the antipausing Gre factors suppress the upregulation observed in the DksA-deficient strain, emphasizing the importance of the secondary channel of the RNA polymerase for regulation and fine-tuning of gene expression in E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concerted action of ppGpp and DksA in transcription has been widely documented. In disparity with this model, phenotypic studies showed that ppGpp and DksA might also have independent and opposing roles in gene expression in Escherichia coli. In this study we used a transcriptomic approach to compare the global transcriptional patterns of gene expression in strains deficient in ppGpp (ppGpp0) and/or DksA ( dksA). Approximately 6 and 7% of all genes were significantly affected by more than twofold in ppGpp- and DksAdeficient strains, respectively, increasing to 13% of all genes in the ppGpp0 dksA strain. Although the data indicate that most of the affected genes were copositively or conegatively regulated by ppGpp and DksA, some genes that were independently and/or differentially regulated by the two factors were found. The large functional group of chemotaxis and flagellum synthesis genes were notably differentially affected, with all genes being upregulated in the DksA-deficient strain but 60% of them being downregulated in the ppGpp-deficient strain. Revealingly, mutations in the antipausing Gre factors suppress the upregulation observed in the DksA-deficient strain, emphasizing the importance of the secondary channel of the RNA polymerase for regulation and fine-tuning of gene expression in E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a multifunctional protein with defined functions in numerous mammalian cellular processes. GAPDH functional diversity depends on various factors such as covalent modifications, subcellular localization, oligomeric state and intracellular concentration of substrates or ligands, as well as protein-protein interactions. In bacteria, alternative GAPDH functions have been associated with its extracellular location in pathogens or probiotics. In this study, new intracellular functions of E. coli GAPDH were investigated following a proteomic approach aimed at identifying interacting partners using in vivo formaldehyde cross-linking followed by mass spectrometry. The identified proteins were involved in metabolic processes, protein synthesis and folding or DNA repair. Some interacting proteins were also identified in immunopurification experiments in the absence of cross-linking. Pull-down experiments and overlay immunoblotting were performed to further characterize the interaction with phosphoglycolate phosphatase (Gph). This enzyme is involved in the metabolism of 2-phosphoglycolate formed in the DNA repair of 3"-phosphoglycolate ends generated by bleomycin damage. We show that interaction between Gph and GAPDH increases in cells challenged with bleomycin, suggesting involvement of GAPDH in cellular processes linked to DNA repair mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lldPRD operon of Escherichia coli, involved in L-lactate metabolism, is induced by growth in this compound. We experimentally identified that this system is transcribed from a single promoter with an initiation site located 110 nucleotides upstream of the ATG start codon. On the basis of computational data, it had been proposed that LldR and its homologue PdhR act as regulators of the lldPRD operon. Nevertheless, no experimental data on the function of these regulators have been reported so far. Here we show that induction of an lldP-lacZ fusion by L-lactate is lost in an lldR mutant, indicating the role of LldR in this induction. Expression analysis of this construct in a pdhR mutant ruled out the participation of PdhR in the control of lldPRD. Gel shift experiments showed that LldR binds to two operator sites, O1 (positions 105 to 89) and O2 (positions 22 to 38), with O1 being filled at a lower concentration of LldR. L-Lactate induced a conformational change in LldR that did not modify its DNA binding activity. Mutations in O1 and O2 enhanced the basal transcriptional level. However, only mutations in O1 abolished induction by L-lactate. Mutants with a change in helical phasing between O1 and O2 behaved like O2 mutants. These results were consistent with the hypothesis that LldR has a dual role, acting as a repressor or an activator of lldPRD. We propose that in the absence of L-lactate, LldR binds to both O1 and O2, probably leading to DNA looping and the repression of transcription. Binding of L-lactate to LldR promotes a conformational change that may disrupt the DNA loop, allowing the formation of the transcription open complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports a bacteria autonomous controlled concentrator prototype with a user-friendly interface for bench-top applications. It is based on a micro-fluidic lab-on-a-chip and its associated custom instrumentation, which consists in a dielectrophoretic actuator, to pre-concentrate the sample, and an impedance analyser, to measure concentrated bacteria levels. The system is composed by a single micro-fluidic chamber with interdigitated electrodes and a instrumentation with custom electronics. The prototype is supported by a real-time platform connected to a remote computer, which automatically controls the system and displays impedance data used to monitor the status of bacteria accumulation on-chip. The system automates the whole concentrating operation. Performance has been studied for controlled volumes of Escherichia coli (E. coli) samples injected into the micro-fluidic chip at constant flow rate of 10 μL/min. A media conductivity correcting protocol has been developed, as the preliminary results showed distortion of the impedance analyser measurement produced by bacterial media conductivity variations through time. With the correcting protocol, the measured impedance values were related to the quantity of bacteria concentrated with a correlation of 0.988 and a coefficient of variation of 3.1%. Feasibility of E. coli on-chip automated concentration, using the miniaturized system, has been demonstrated. Furthermore, the impedance monitoring protocol had been adjusted and optimized, to handle changes in the electrical properties of the bacteria media over time.