5 resultados para Equasym™ XL
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-xL. These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.
Resumo:
In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator.
Resumo:
Objectives: The purpose of this study is to determine the possible differences in deflection between two needles of same length and external gauge but with different internal gauges during truncal block of the inferior alveolar nerve. The initial working hypothesis was that greater deflection may be expected with larger internal gauge needles. Study design: Four clinicians subjected 346 patients to inferior alveolar nerve block and infiltrating anesthesia of the buccal nerve trajectory for the surgical or conventional extraction of the lower third molar. A nonautoaspirating syringe system with 2 types of needle was used: a standard 27-gauge x 35-mm needle with an internal gauge of 0.215 mm or an XL Monoprotect® 27-gauge x 35-mm needle with an internal gauge of 0.265 mm. The following information was systematically recorded for each patient: needle type, gender, anesthetic technique (direct or indirect truncal block) and the number of bone contacts during the procedure, the patient-extraction side, the practitioner performing the technique, and blood aspiration (either positive or negative). Results: 346 needles were used in total. 190 were standard needles (27-gauge x 35-mm needle with an internal gauge of 0.215 mm) and 156 were XL Monoprotect®. Incidence of deflection was observed in 49.1% of cases (170 needles) where 94 were standard needles and 76 XL Monoprotect®. Needle torsion ranged from 0º and 6º. Conclusions: No significant differences were recorded in terms of deflection and internal gauge, operator, patient-extraction side, the anesthetic technique involved and the number of bone contacts during the procedure
Resumo:
Hepatocellular carcinoma (HCC) is a major health problem, being the sixth most common cancer world-wide. Dysregulation of the balance between proliferation and cell death represents a pro-tumorigenic principle in human hepatocarcinogenesis. This review updates the recent relevant contributions reporting molecular alterations for HCC that induce an imbalance in the regulation of apoptosis. Alterations in the expression and/or activation of p53 are frequent in HCC cells, which confer on them resistance to chemotherapeutic drugs. Many HCCs are also insensitive to apoptosis induced either by death receptor ligands, such as FasL or TRAIL, or by transforming growth factor-beta (TGF-beta). Although the expression of some pro-apoptotic genes is decreased, the balance between death and survival is dysregulated in HCC mainly due to overactivation of anti-apoptotic pathways. Indeed, some molecules involved in counteracting apoptosis, such as Bcl-XL, Mcl-1, c-IAP1, XIAP or survivin are over-expressed in HCC cells. Furthermore, some growth factors that mediate cell survival are up-regulated in HCC, as well as the molecules involved in the machinery responsible for cleavage of their pro-forms to an active peptide. The expression and/or activation of the JAK/STAT, PI3K/AKT and RAS/ERKs pathways are enhanced in many HCC cells, conferring on them resistance to apoptotic stimuli. Finally, recent evidence indicates that inflammatory processes, as well as the epithelial-mesenchymal transitions that occur in HCC cells to facilitate their dissemination, are related to cell survival. Therefore, therapeutic strategies to selectively inhibit anti-apoptotic signals in liver tumor cells have the potential to provide powerful tools to treat HCC.
Resumo:
Melanoma is one of the most aggressive types of skin cancer and its incidence rate is still increasing. All existing treatments are minimally effective. Consequently, new therapeutic agents for melanoma treatment should be developed. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and anti-metastatic properties. The aim of this study was to evaluate the different signaling pathways involved in the cytotoxic effect of DM-1 on melanoma cells. The apoptotic process and cytoskeletal changes were evaluated by immunoblotting and immunofluorescence, respectively, in melanoma cells. After DM-1 treatment, SK-MEL-5 melanoma cells showed actin filament disorganization with spicule formation throughout the cytoskeleton and significant reduction of focal adhesion as well as they were present only at cell extremities, conferring a poor connection between the cell and the substrate. Besides this, there was significant filopodium retraction and loss of typical cytoskeleton scaffold. These modifications contributed to cell detachment followed by cell death. Furthermore, DM-1-induced apoptosis was triggered by multiple Bcl-2 proteins involved in both the extrinsic and the intrinsic apoptotic pathways. SK-MEL-5 cells showed a death mechanism mainly by Bcl-2/Bax ratio decrease, whereas A375 cells presented apoptosis induction by Mcl-1 and Bcl-xL downregulation. In SK-MEL-5 and A375 melanoma cells, there was a significant increase in the active form of caspase 9, and the inactive form of the effector caspase 3 was decreased in both cell lines. Expression of cleaved poly ADP ribose polymerase was increased after DM-1 treatment in these melanoma cell lines, demonstrating that the apoptotic process occurred. Altogether, these data elucidate the cellular and molecular mechanisms involved in the cytotoxicity induced by the antitumor agent DM-1 in melanoma cells.