4 resultados para Environmental health - Research
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: There is growing evidence that traffic-related air pollution reduces birth weight. Improving exposure assessment is a key issue to advance in this research area.Objective: We investigated the effect of prenatal exposure to traffic-related air pollution via geographic information system (GIS) models on birth weight in 570 newborns from the INMA (Environment and Childhood) Sabadell cohort.Methods: We estimated pregnancy and trimester-specific exposures to nitrogen dioxide and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] by using temporally adjusted land-use regression (LUR) models. We built models for NO2 and BTEX using four and three 1-week measurement campaigns, respectively, at 57 locations. We assessed the relationship between prenatal air pollution exposure and birth weight with linear regression models. We performed sensitivity analyses considering time spent at home and time spent in nonresidential outdoor environments during pregnancy.Results: In the overall cohort, neither NO2 nor BTEX exposure was significantly associated with birth weight in any of the exposure periods. When considering only women who spent < 2 hr/day in nonresidential outdoor environments, the estimated reductions in birth weight associated with an interquartile range increase in BTEX exposure levels were 77 g [95% confidence interval (CI), 7–146 g] and 102 g (95% CI, 28–176 g) for exposures during the whole pregnancy and the second trimester, respectively. The effects of NO2 exposure were less clear in this subset.Conclusions: The association of BTEX with reduced birth weight underscores the negative role of vehicle exhaust pollutants in reproductive health. Time–activity patterns during pregnancy complement GIS-based models in exposure assessment.
Resumo:
Background: A holistic perspective on health implies giving careful consideration to the relationship between physical and mental health. In this regard the present study sought to determine the level of Positive Mental Health (PMH) among people with chronic physical health problems, and to examine the relationship between the observed levels of PMH and both physical health status and socio-demographic variables. Methods: The study was based on the Multifactor Model of Positive Mental Health (Lluch, 1999), which comprises six factors: Personal Satisfaction (F1), Prosocial Attitude (F2), Self-control (F3), Autonomy (F4), Problem-solving and Self-actualization (F5), and Interpersonal Relationship Skills (F6). The sample comprised 259 adults with chronic physical health problems who were recruited through a primary care center in the province of Barcelona (Spain). Positive mental health was assessed by means of the Positive Mental Health Questionnaire (Lluch, 1999). Results: Levels of PMH differed, either on the global scale or on specific factors, in relation to the following variables: age: global PMH scores decreased with age (r=-0.129; p=0.038); b) gender: men scored higher on F1 (t=2.203; p=0.028) and F4 (t=3.182; p=0.002), while women scored higher on F2 (t -3.086; p=0.002) and F6 (t=-2.744; p=0.007); c) number of health conditions: the fewer the number of health problems the higher the PMH score on F5 (r=-0.146; p=0.019); d) daily medication: polymedication patients had lower PMH scores, both globally and on various factors; e) use of analgesics: occasional use of painkillers was associated with higher PMH scores on F1 (t=-2.811; p=0.006). There were no significant differences in global PMH scores according to the type of chronic health condition. The only significant difference in the analysis by factors was that patients with hypertension obtained lower PMH scores on the factor Autonomy (t=2.165; p=0.032). Conclusions: Most people with chronic physical health problems have medium or high levels of PMH. The variables that adversely affect PMH are old age, polypharmacy and frequent consumption of analgesics. The type of health problem does not influence the levels of PMH. Much more extensive studies with samples without chronic pathology are now required in order to be able to draw more robust conclusions.
Resumo:
Background: Some countries have recently extended smoke-free policies to particular outdoor settings; however, there is controversy regarding whether this is scientifically and ethically justifiable. Objectives: The objective of the present study was to review research on secondhand smoke (SHS) exposure in outdoor settings. Data sources: We conducted different searches in PubMed for the period prior to September 2012. We checked the references of the identified papers, and conducted a similar search in Google Scholar. Study selection: Our search terms included combinations of"secondhand smoke,""environmental tobacco smoke,""passive smoking" OR"tobacco smoke pollution" AND"outdoors" AND"PM" (particulate matter),"PM2.5" (PM with diameter ≤ 2.5 µm),"respirable suspended particles,""particulate matter,""nicotine,""CO" (carbon monoxide),"cotinine,""marker,""biomarker" OR"airborne marker." In total, 18 articles and reports met the inclusion criteria. Results: Almost all studies used PM2.5 concentration as an SHS marker. Mean PM2.5 concentrations reported for outdoor smoking areas when smokers were present ranged from 8.32 to 124 µg/m3 at hospitality venues, and 4.60 to 17.80 µg/m3 at other locations. Mean PM2.5 concentrations in smoke-free indoor settings near outdoor smoking areas ranged from 4 to 120.51 µg/m3. SHS levels increased when smokers were present, and outdoor and indoor SHS levels were related. Most studies reported a positive association between SHS measures and smoker density, enclosure of outdoor locations, wind conditions, and proximity to smokers. Conclusions: The available evidence indicates high SHS levels at some outdoor smoking areas and at adjacent smoke-free indoor areas. Further research and standardization of methodology is needed to determine whether smoke-free legislation should be extended to outdoor settings.
Resumo:
Case-crossover is one of the most used designs for analyzing the health-related effects of air pollution. Nevertheless, no one has reviewed its application and methodology in this context. Objective: We conducted a systematic review of case-crossover (CCO) designs used to study the relationship between air pollution and morbidity and mortality, from the standpoint of methodology and application.Data sources and extraction: A search was made of the MEDLINE and EMBASE databases.Reports were classified as methodologic or applied. From the latter, the following information was extracted: author, study location, year, type of population (general or patients), dependent variable(s), independent variable(s), type of CCO design, and whether effect modification was analyzed for variables at the individual level. Data synthesis: The review covered 105 reports that fulfilled the inclusion criteria. Of these, 24 addressed methodological aspects, and the remainder involved the design’s application. In the methodological reports, the designs that yielded the best results in simulation were symmetric bidirectional CCO and time-stratified CCO. Furthermore, we observed an increase across time in the use of certain CCO designs, mainly symmetric bidirectional and time-stratified CCO. The dependent variables most frequently analyzed were those relating to hospital morbidity; the pollutants most often studied were those linked to particulate matter. Among the CCO-application reports, 13.6% studied effect modification for variables at the individual level.Conclusions: The use of CCO designs has undergone considerable growth; the most widely used designs were those that yielded better results in simulation studies: symmetric bidirectional and time-stratified CCO. However, the advantages of CCO as a method of analysis of variables at the individual level are put to little use