8 resultados para Engineering, Computer|Engineering, Electronics and Electrical|Computer Science
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Purpose - There has been much research on manufacturing flexibility, but supply chain flexibility is still an under-investigated area. This paper focuses on supply flexibility, the aspects of flexibility related to the upstream supply chain. Our purpose is to investigate why and how firms increase supply flexibility.Methodology/Approach An exploratory multiple case study was conducted. We analyzed seven Spanish manufacturers from different sectors (automotive, apparel, electronics and electrical equipment).Findings - The results show that there are some major reasons why firms need supply flexibility (manufacturing schedule fluctuations, JIT purchasing, manufacturing slack capacity, low level of parts commonality, demand volatility, demand seasonality and forecast accuracy), and that companies increase this type of flexibility by implementing two main strategies: to increase suppliers responsiveness capability and flexible sourcing . The results also suggest that the supply flexibility strategy selected depends on two factors: the supplier searching and switching costs and the type of uncertainty (mix, volume or delivery).Research limitations - This paper has some limitations common to all case studies, such as the subjectivity of the analysis, and the questionable generalizability of results (since the sample of firms is not statistically significant).Implications - Our study contributes to the existing literature by empirically investigating which are the main reasons for companies needing to increase supply flexibility, how they increase this flexibility, and suggesting some factors that could influence the selection of a particular supply flexibility strategy.
Resumo:
This line of research of my group intends to establish a Silicon technological platform in the field of photonics allowing the development of a wide set of applications. Particularly, what is still lacking in Silicon Photonics is an efficient and integrable light source such an LED or laser. Nanocrystals in silicon oxide or nitride matrices have been recently demonstrated as competitive materials for both active components (electrically and optically driven light emitters and optical amplifiers) and passive ones (waveguides and modulators). The final goal is the achievement of a complete integration of electronic and optical functions in the same CMOS chip. The first part of this paper will introduce the structural and optical properties of LEDs fabricated from silicon nanostructures. The second will treat the interaction of such nanocrystals with rare-earth elements (Er), which lead to an efficient hybrid system emitting in the third window of optical fibers. I will present the fabrication and assessment of optical waveguide amplifiers at 1.54 ¿m for which we have been able to demonstrate recently optical gain in waveguides made from sputtered silicon suboxide materials.
Resumo:
This paper analyses the adoption of new information and communication technologies (ICTs) by Spanish journalists specialising in science. Applying an ethnographic research model, this study was based on a wide sample of professionals, aiming to evaluate the extent by which science journalists have adopted the new media and changed the way they use information sources. In addition, interviewees were asked whether in their opinion the Web 2.0 has had an impact on the quality of the news. The integration of formats certainly implies a few issues for today’s newsrooms. Finally, with the purpose of improving the practice of science information dissemination, the authors put forward a few proposals, namely: Increasing the training of Spanish science journalists in the field of new technologies; Emphasising the accuracy of the information and the validation of sources; Rethinking the mandates and the tasks of information professionals.
Resumo:
The optical and electrical recovery processes of the metastable state of the EL2 defect artificially created in n‐type GaAs by boron or oxygen implantation are analyzed at 80 K using optical isothermal transient spectroscopy. In both cases, we have found an inhibition of the electrical recovery and the existence of an optical recovery in the range 1.1-1.4 eV, competing with the photoquenching effect. The similar results obtained with both elements and the different behavior observed in comparison with the native EL2 defect has been related to the network damage produced by the implantation process. From the different behavior with the technological process, it can be deduced that the electrical and optical anomalies have a different origin. The electrical inhibition is due to the existence of an interaction between the EL2 defect and other implantation‐created defects. However, the optical recovery seems to be related to a change in the microscopic metastable state configuration involving the presence of vacancies
Resumo:
Three-dimensional reconstruction of reservoir analogues can be improved combining data from different geophysical methods. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) data are valuable tools, since they provide subsurface information from internal architecture and facies distribution of sedimentary rock bodies, enabling the upgrading of depositional models and heterogeneity reconstruction. The Lower Eocene Roda Sandstone is a well-known deltaic complex widely studied as a reservoir analogue that displays a series of sandstone wedges with a general NE to SW progradational trend. To provide a better understanding of internal heterogeneity of a 10m-thick progradational delta-front sandstone unit, 3D GPR data were acquired. In addition, common midpoints (CMP) to measure the sandstone subsoil velocity, test profiles with different frequency antennas (25, 50 and 100MHz) and topographic data for subsequent correction in the geophysical data were also obtained. Three ERT profiles were also acquired to further constrain GPR analysis. These geophysical results illustrate the geometry of reservoir analogue heterogeneities both depositional and diagenetic in nature, improving and complementing previous outcrop-derived data. GPR interpretation using radar stratigraphy principles and attributes analysis provided: 1)tridimensional geometry of major stratigraphic surfaces that define four units in the GPR Prism, 2) image the internal architecture of the units and their statistical study of azimuth and dips, useful for a quick determination of paleocurrent directions. These results were used to define the depositional architecture of the progradational sandbody that shows an arrangement in very-high-frequency sequences characterized by clockwise paleocurrent variations and decrease of the sedimentary flow, similar to those observed at a greater scale in the same system. This high-frequency sequential arrangement has been attributed to the autocyclic dynamics of a supply-dominated delta- front where fluvial and tidal currents are in competition. The resistivity models enhanced the viewing of reservoir quality associated with cement distribution caused by depositional and early diagenetic processes related to the development of transgressive and regressive systems tracts in igh-frequency sequences.
Resumo:
The alignment between competences, teaching-learning methodologies and assessment is a key element of the European Higher Education Area. This paper presents the efforts carried out by six Telematics, Computer Science and Electronic Engineering Education teachers towards achieving this alignment in their subjects. In a joint work with pedagogues, a set of recommended actions were identified. A selection of these actions were applied and evaluated in the six subjects. The cross-analysis of the results indicate that the actions allow students to better understand the methodologies and assessment planned for the subjects, facilitate (self-) regulation and increase students’ involvement in the subjects.
Resumo:
Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.
Resumo:
This work focuses on the prediction of the two main nitrogenous variables that describe the water quality at the effluent of a Wastewater Treatment Plant. We have developed two kind of Neural Networks architectures based on considering only one output or, in the other hand, the usual five effluent variables that define the water quality: suspended solids, biochemical organic matter, chemical organic matter, total nitrogen and total Kjedhal nitrogen. Two learning techniques based on a classical adaptative gradient and a Kalman filter have been implemented. In order to try to improve generalization and performance we have selected variables by means genetic algorithms and fuzzy systems. The training, testing and validation sets show that the final networks are able to learn enough well the simulated available data specially for the total nitrogen