9 resultados para Economic forecasting--South Carolina
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Pensions together with savings and investments during active life are key elements of retirement planning. Motivation for personal choices about the standard of living, bequest and the replacement ratio of pension with respect to last salary income must be considered. This research contributes to the financial planning by helping to quantify long-term care economic needs. We estimate life expectancy from retirement age onwards. The economic cost of care per unit of service is linked to the expected time of needed care and the intensity of required services. The expected individual cost of long-term care from an onset of dependence is estimated separately for men and women. Assumptions on the mortality of the dependent people compared to the general population are introduced. Parameters defining eligibility for various forms of coverage by the universal public social care of the welfare system are addressed. The impact of the intensity of social services on individual predictions is assessed, and a partial coverage by standard private insurance products is also explored. Data were collected by the Spanish Institute of Statistics in two surveys conducted on the general Spanish population in 1999 and in 2008. Official mortality records and life table trends were used to create realistic scenarios for longevity. We find empirical evidence that the public long-term care system in Spain effectively mitigates the risk of incurring huge lifetime costs. We also find that the most vulnerable categories are citizens with moderate disabilities that do not qualify to obtain public social care support. In the Spanish case, the trends between 1999 and 2008 need to be further explored.
Resumo:
The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.
Resumo:
Abstract Purpose- There is a lack of studies on tourism demand forecasting that use non-linear models. The aim of this paper is to introduce consumer expectations in time-series models in order to analyse their usefulness to forecast tourism demand. Design/methodology/approach- The paper focuses on forecasting tourism demand in Catalonia for the four main visitor markets (France, the UK, Germany and Italy) combining qualitative information with quantitative models: autoregressive (AR), autoregressive integrated moving average (ARIMA), self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. The forecasting performance of the different models is evaluated for different time horizons (one, two, three, six and 12 months). Findings- Although some differences are found between the results obtained for the different countries, when comparing the forecasting accuracy of the different techniques, ARIMA and Markov switching regime models outperform the rest of the models. In all cases, forecasts of arrivals show lower root mean square errors (RMSE) than forecasts of overnight stays. It is found that models with consumer expectations do not outperform benchmark models. These results are extensive to all time horizons analysed. Research limitations/implications- This study encourages the use of qualitative information and more advanced econometric techniques in order to improve tourism demand forecasting. Originality/value- This is the first study on tourism demand focusing specifically on Catalonia. To date, there have been no studies on tourism demand forecasting that use non-linear models such as self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. This paper fills this gap and analyses forecasting performance at a regional level. Keywords Tourism, Forecasting, Consumers, Spain, Demand management Paper type Research paper
Resumo:
En los últimos 30 años la proliferación de modelos cuantitativos de predicción de la insolvencia empresarial en la literatura contable y financiera ha despertado un gran interés entre los especialistas e investigadores de lamateria. Lo que en un principio fueron unos modelos elaborados con un único objetivo, han derivado en una fuente de investigación constante.En este documento se formula un modelo de predicción de la insolvencia a través de la combinación de diferentes variables cuantitativas extraídas de los estados contables de una muestra de empresas para los años 1994-1997. A través de un procedimiento por etapas se selecciona e interpreta cuáles son las más relevantes en cuanto a aportación de información.Una vez formulado este primer tipo de modelos se busca una alternativa a las variables anteriores a través de la técnica factorial del análisis de componentes principales. Con ella se hace una selección de variables y se aplica, junto conlos ratios anteriores, el análisis univariante. Por último, se comparan los modelos obtenidos y se concluye que aunque la literatura previa ofrece mejores porcentajes de clasificación, los modelos obtenidos a través del análisis decomponentes principales no deben ser rechazados por la claridad en la explicación de las causas que conducen a una empresa a la insolvencia.
Resumo:
En los últimos 30 años la proliferación de modelos cuantitativos de predicción de la insolvencia empresarial en la literatura contable y financiera ha despertado un gran interés entre los especialistas e investigadores de lamateria. Lo que en un principio fueron unos modelos elaborados con un único objetivo, han derivado en una fuente de investigación constante.En este documento se formula un modelo de predicción de la insolvencia a través de la combinación de diferentes variables cuantitativas extraídas de los estados contables de una muestra de empresas para los años 1994-1997. A través de un procedimiento por etapas se selecciona e interpreta cuáles son las más relevantes en cuanto a aportación de información.Una vez formulado este primer tipo de modelos se busca una alternativa a las variables anteriores a través de la técnica factorial del análisis de componentes principales. Con ella se hace una selección de variables y se aplica, junto conlos ratios anteriores, el análisis univariante. Por último, se comparan los modelos obtenidos y se concluye que aunque la literatura previa ofrece mejores porcentajes de clasificación, los modelos obtenidos a través del análisis decomponentes principales no deben ser rechazados por la claridad en la explicación de las causas que conducen a una empresa a la insolvencia.
Resumo:
[spa] En este artículo, analizamos la volatilidad agregada de una economía estilizada donde los agentes estann conectados en redes. Si hay relaciones estratégicas entre las acciones de los agentes, choques idiosincráticos pueden generar fluctuaciones agregadas. Demonstramos que la volatilidad agregada depende de la estructura de redes de la economía de dos maneras. Por un lado, si hay más conexiones en la economía en su conjunto, la volatilidad agregada es más baja. Por otro lado, si las conexiones están más concentradas, la volatilidad agregada es más alta. Presentamos una aplicación de nuestras predicciones teóricas que utiliza datos de EEUU de conexiones intrasectoriales y de diversificación de las empresas.
Resumo:
[spa] En este artículo, analizamos la volatilidad agregada de una economía estilizada donde los agentes estann conectados en redes. Si hay relaciones estratégicas entre las acciones de los agentes, choques idiosincráticos pueden generar fluctuaciones agregadas. Demonstramos que la volatilidad agregada depende de la estructura de redes de la economía de dos maneras. Por un lado, si hay más conexiones en la economía en su conjunto, la volatilidad agregada es más baja. Por otro lado, si las conexiones están más concentradas, la volatilidad agregada es más alta. Presentamos una aplicación de nuestras predicciones teóricas que utiliza datos de EEUU de conexiones intrasectoriales y de diversificación de las empresas.
Resumo:
Budget forecasts have become increasingly important as a tool of fiscal management to influence expectations of bond markets and the public at large. The inherent difficulty in projecting macroeconomic variables – together with political bias – thwart the accuracy of budget forecasts. We improve accuracy by combining the forecasts of both private and public agencies for Italy over the period 1993-2012. A weighted combined forecast of the deficit/ ratio is superior to any single forecast. Deficits are hard to predict due to shifting economic conditions and political events. We test and compare predictive accuracy over time and although a weighted combined forecast is robust to breaks, there is no significant improvement over a simple RW model.
Resumo:
Budget forecasts have become increasingly important as a tool of fiscal management to influence expectations of bond markets and the public at large. The inherent difficulty in projecting macroeconomic variables – together with political bias – thwart the accuracy of budget forecasts. We improve accuracy by combining the forecasts of both private and public agencies for Italy over the period 1993-2012. A weighted combined forecast of the deficit/ ratio is superior to any single forecast. Deficits are hard to predict due to shifting economic conditions and political events. We test and compare predictive accuracy over time and although a weighted combined forecast is robust to breaks, there is no significant improvement over a simple RW model.