8 resultados para EXUDATE POLYSACCHARIDE
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Although bacteremic pneumococcal pneumonia is the most severe form of pneumonia, non-bacteremic forms are much more frequent. Laboratory methods for the diagnosis of nonbacteremic pneumococcal pneumonia have a low sensitivity and specificity, and therefore all-cause pneumonia has been proposed as a suitable outcome to evaluate vaccination effectiveness. This work reviews the epidemiology of community-acquired pneumonia (CAP) and evaluates the effectiveness of the 3-valent pneumococcal polysaccharide vaccine (PPV-23) in preventing CAP requiring hospitalization in people aged ≥65 years. We performed a case-control study in patients aged ≥65 years admitted through the emergency department who presented with clinical signs and symptoms compatible with pneumonia. Weincluded 489 cases and 1,467 controls and it was obtained a vaccine efectiveness of 23.6 (0.9-41.0). Our results suggest that PPV-23 vaccination is effective and reduces hospital admissions due to pneumonia in the elderly, strengthening the rationale for vaccination programmes in this age group.
Resumo:
Although bacteremic pneumococcal pneumonia is the most severe form of pneumonia, non-bacteremic forms are much more frequent. Laboratory methods for the diagnosis of nonbacteremic pneumococcal pneumonia have a low sensitivity and specificity, and therefore all-cause pneumonia has been proposed as a suitable outcome to evaluate vaccination effectiveness. This work reviews the epidemiology of community-acquired pneumonia (CAP) and evaluates the effectiveness of the 3-valent pneumococcal polysaccharide vaccine (PPV-23) in preventing CAP requiring hospitalization in people aged ≥65 years. We performed a case-control study in patients aged ≥65 years admitted through the emergency department who presented with clinical signs and symptoms compatible with pneumonia. Weincluded 489 cases and 1,467 controls and it was obtained a vaccine efectiveness of 23.6 (0.9-41.0). Our results suggest that PPV-23 vaccination is effective and reduces hospital admissions due to pneumonia in the elderly, strengthening the rationale for vaccination programmes in this age group.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compounds for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors associated with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-negative bacteria consisting of lipid A (lipid anchor of the molecule), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chemical structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-D-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and L-glycero-D-manno-Heptoses (L,D-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), D,D-Hep (in Aeromonas salmonicida), and L,D-Hep (in Aeromonas hydrophila). The biological relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the molecule is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A molecules, differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising of 4′-monophosphorylated β-2-amino-2-deoxy-D-glucopyranose-(1→6)-2-amino-2-deoxy-D-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
We investigated the effect of benthic substratum type (sand and rocks) and nutrient supply (N and P) on biofilm structure and heterotrophic metabolism in a field experiment in a forested Mediterranean stream (Fuirosos). Rock and sand colonization and biofilm formation was intensively studied for 44 d at two stream reaches: control and experimental (continuous addition of phosphate, ammonia, and nitrate). Structural (C, N, and polysaccharide content and bacterial and chlorophyll density) and metabolic biofilm parameters (b-glucosidase, peptidase, and phosphatase enzyme activities) were analyzed throughout the colonization process. The epilithic biofilm (grown on rocks) had a higher peptidase activity at the impacted reach, together with a higher algal and bacterial biomass. The positive relationship between the peptidase activity per cell and the N content of the epilithic biofilm suggested that heterotrophic utilization of proteinaceous compounds from within the biofilm was occurring. In contrast, nutrient addition caused the epipsammic biofilm (grown on sand) to exhibit lower b-glucosidase and phosphatase activities, without a significant increase in bacterial and algal biomass. The differential response to nutrient addition was related to different structural characteristics within each biofilm. The epipsammic biofilm had a constant and high C:N ratio (22.7) throughout the colonization. The epilithic biofilm had a higher C:N ratio at the beginning of the colonization (43.2) and evolved toward a more complex structure (high polysaccharide content and low C:N ratio) during later stages. The epipsammic biofilm was a site for the accumulation and degradation of organic matter: polysaccharides and organic phosphorus compounds had higher degradation activities
Resumo:
Background: Since the use of pneumococcal conjugate vaccines PCV7 and PCV13 in children became widespread, invasive pneumococcal disease (IPD) has dramatically decreased. Nevertheless, there has been a rise in incidence of Streptococcus pneumoniae non-vaccine serotypes (NVT) colonising the human nasopharynx. Nasopharyngeal colonisation, an essential step in the development of S. pneumoniae-induced IPD, is associated with biofilm formation. Although the capsule is the main pneumococcal virulence factor, the formation of pneumococcal biofilms might, in fact, be limited by the presence of capsular polysaccharide (CPS). Methodology/Principal Findings: We used clinical isolates of 16 emerging, non-PCV13 serotypes as well as isogenic transformants of the same serotypes. The biofilm formation capacity of isogenic transformants expressing CPSs from NVT was evaluated in vitro to ascertain whether this trait can be used to predict the emergence of NVT. Fourteen out of 16 NVT analysed were not good biofilm formers, presumably because of the presence of CPS. In contrast, serotypes 11A and 35B formed >45% of the biofilm produced by the non-encapsulated M11 strain. Conclusions/Significance This study suggest that emerging, NVT serotypes 11A and 35B deserve a close surveillance.