7 resultados para EXPERIMENTAL VALIDATION

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manualannotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results.Results: The GENCODE gene features are divided into eight different categories of which onlythe first two (known and novel coding sequence) are confidently predicted to be protein-codinggenes. 5’ rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentallyverify the initial annotation. Of the 420 coding loci tested, 229 RACE products have beensequenced. They supported 5’ extensions of 30 loci and new splice variants in 50 loci. In addition,46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15putative transcripts. We assessed the comprehensiveness of the GENCODE annotation byattempting to validate all the predicted exon boundaries outside the GENCODE annotation. Outof 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only twoof them in intergenic regions.Conclusions: In total, 487 loci, of which 434 are coding, have been annotated as part of theGENCODE reference set available from the UCSC browser. Comparison of GENCODEannotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained withinthe two sets, which is a reflection of the high number of alternative splice forms with uniqueexons annotated. Over 50% of coding loci have been experimentally verified by 5’ RACE forEGASP and the GENCODE collaboration is continuing to refine its annotation of 1% humangenome with the aid of experimental validation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: We present the results of EGASP, a community experiment to assess the state-ofthe-art in genome annotation within the ENCODE regions, which span 1% of the human genomesequence. The experiment had two major goals: the assessment of the accuracy of computationalmethods to predict protein coding genes; and the overall assessment of the completeness of thecurrent human genome annotations as represented in the ENCODE regions. For thecomputational prediction assessment, eighteen groups contributed gene predictions. Weevaluated these submissions against each other based on a ‘reference set’ of annotationsgenerated as part of the GENCODE project. These annotations were not available to theprediction groups prior to the submission deadline, so that their predictions were blind and anexternal advisory committee could perform a fair assessment.Results: The best methods had at least one gene transcript correctly predicted for close to 70%of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into accountalternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotidelevel, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programsrelying on mRNA and protein sequences were the most accurate in reproducing the manuallycurated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could beverified.Conclusions: This is the first such experiment in human DNA, and we have followed thestandards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe theresults presented here contribute to the value of ongoing large-scale annotation projects and shouldguide further experimental methods when being scaled up to the entire human genome sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Despite the continuous production of genome sequence for a number of organisms,reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularlytrue for genomes for which there is not a large collection of known gene sequences, such as therecently published chicken genome. We used the chicken sequence to test comparative andhomology-based gene-finding methods followed by experimental validation as an effective genomeannotation method.Results: We performed experimental evaluation by RT-PCR of three different computational genefinders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram wascomputed and each component of it was evaluated. The results showed that de novo comparativemethods can identify up to about 700 chicken genes with no previous evidence of expression, andcan correctly extend about 40% of homology-based predictions at the 5' end.Conclusions: De novo comparative gene prediction followed by experimental verification iseffective at enhancing the annotation of the newly sequenced genomes provided by standardhomology-based methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The domestic hot water cylinder incorporates encapsulated pcm placed in 57 vertical pipes. The use of PCM increases the thermal energy storage capacity of the cylinder and allows the use of low cost electricity during low peak periods. After experimental validation the numerical model developed in the project will be used to optimize the distribution of the pcm inside the water tank.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actualment, la resposta de la majoria d’instrumentació operacional i dels dosímetres personals utilitzats en radioprotecció per a la dosimetria neutrònica és altament dependent de l’energia dels espectres neutrònics a analitzar, especialment amb camps neutrònics amb una important component intermitja. En conseqüència, la interpretació de les lectures d’aquests aparells es complicada si no es té un coneixement previ de la distribució espectral de la fluència neutrònica en els punts d’interès. El Grup de Física de les Radiacions de la Universitat Autònoma de Barcelona (GFR-UAB) ha desenvolupat en els últims anys un espectròmetre de neutrons basat en un Sistema d’Esferes Bonner (BSS) amb un contador proporcional d’3He com a detector actiu. Els principals avantatges dels espectròmetres de neutrons per BSS són: la seva resposta isotròpica, la possibilitat de discriminar la component neutrònica de la gamma en camps mixtos, i la seva alta sensibilitat neutrònica als nivells de dosi analitzats. Amb aquestes característiques, els espectròmetres neutrònics per BSS compleixen amb els estándards de les últimes recomanacions de la ICRP i poden ser utilitzats també en el camp de la dosimetria neutrònica per a la mesura de dosis en el rang d’energia que va dels tèrmics fins als 20 MeV, en nou ordres de magnitud. En el marc de la col•laboració entre el GFR - UAB i el Laboratorio Nazionale di Frascati – Istituto Nazionale di Fisica Nucleare (LNF-INFN), ha tingut lloc una experiència comparativa d’espectrometria per BSS amb els feixos quasi monoenergètics de 2.5 MeV i 14 MeV del Fast Neutron Generator de l’ENEA. En l’exercici s’ha determinat l’espectre neutrònic a diferents distàncies del blanc de l’accelerador, aprofitant el codi FRUIT recentment desenvolupat pel grup LNF. Els resultats obtinguts mostren una bona coherència entre els dos espectròmetres i les dades mesurades i simulades.