58 resultados para EXACT S-MATRIX
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of TeX = 4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In economic literature, information deficiencies and computational complexities have traditionally been solved through the aggregation of agents and institutions. In inputoutput modelling, researchers have been interested in the aggregation problem since the beginning of 1950s. Extending the conventional input-output aggregation approach to the social accounting matrix (SAM) models may help to identify the effects caused by the information problems and data deficiencies that usually appear in the SAM framework. This paper develops the theory of aggregation and applies it to the social accounting matrix model of multipliers. First, we define the concept of linear aggregation in a SAM database context. Second, we define the aggregated partitioned matrices of multipliers which are characteristic of the SAM approach. Third, we extend the analysis to other related concepts, such as aggregation bias and consistency in aggregation. Finally, we provide an illustrative example that shows the effects of aggregating a social accounting matrix model.
Resumo:
When underwater vehicles navigate close to the ocean floor, computer vision techniques can be applied to obtain motion estimates. A complete system to create visual mosaics of the seabed is described in this paper. Unfortunately, the accuracy of the constructed mosaic is difficult to evaluate. The use of a laboratory setup to obtain an accurate error measurement is proposed. The system consists on a robot arm carrying a downward looking camera. A pattern formed by a white background and a matrix of black dots uniformly distributed along the surveyed scene is used to find the exact image registration parameters. When the robot executes a trajectory (simulating the motion of a submersible), an image sequence is acquired by the camera. The estimated motion computed from the encoders of the robot is refined by detecting, to subpixel accuracy, the black dots of the image sequence, and computing the 2D projective transform which relates two consecutive images. The pattern is then substituted by a poster of the sea floor and the trajectory is executed again, acquiring the image sequence used to test the accuracy of the mosaicking system
Resumo:
Epipolar geometry is a key point in computer vision and the fundamental matrix estimation is the only way to compute it. This article surveys several methods of fundamental matrix estimation which have been classified into linear methods, iterative methods and robust methods. All of these methods have been programmed and their accuracy analysed using real images. A summary, accompanied with experimental results, is given
Resumo:
A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation
Resumo:
The applicability of the protein phosphatase inhibition assay (PPIA) to the determination of okadaic acid (OA) and its acyl derivatives in shellfish samples has been investigated, using a recombinant PP2A and a commercial one. Mediterranean mussel, wedge clam, Pacific oyster and flat oyster have been chosen as model species. Shellfish matrix loading limits for the PPIA have been established, according to the shellfish species and the enzyme source. A synergistic inhibitory effect has been observed in the presence of OA and shellfish matrix, which has been overcome by the application of a correction factor (0.48). Finally, Mediterranean mussel samples obtained from Rı´a de Arousa during a DSP closure associated to Dinophysis acuminata, determined as positive by the mouse bioassay, have been analysed with the PPIAs. The OA equivalent contents provided by the PPIAs correlate satisfactorily with those obtained by liquid chromatography–tandem mass spectrometry (LC–MS/MS).
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
We present a new method for constructing exact distribution-free tests (and confidence intervals) for variables that can generate more than two possible outcomes.This method separates the search for an exact test from the goal to create a non-randomized test. Randomization is used to extend any exact test relating to meansof variables with finitely many outcomes to variables with outcomes belonging to agiven bounded set. Tests in terms of variance and covariance are reduced to testsrelating to means. Randomness is then eliminated in a separate step.This method is used to create confidence intervals for the difference between twomeans (or variances) and tests of stochastic inequality and correlation.
Resumo:
It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.
Resumo:
Asymptotic chi-squared test statistics for testing the equality ofmoment vectors are developed. The test statistics proposed aregeneralizedWald test statistics that specialize for different settings by inserting andappropriate asymptotic variance matrix of sample moments. Scaled teststatisticsare also considered for dealing with situations of non-iid sampling. Thespecializationwill be carried out for testing the equality of multinomial populations, andtheequality of variance and correlation matrices for both normal andnon-normaldata. When testing the equality of correlation matrices, a scaled versionofthe normal theory chi-squared statistic is proven to be an asymptoticallyexactchi-squared statistic in the case of elliptical data.
Resumo:
Graphical displays which show inter--sample distances are importantfor the interpretation and presentation of multivariate data. Except whenthe displays are two--dimensional, however, they are often difficult tovisualize as a whole. A device, based on multidimensional unfolding, isdescribed for presenting some intrinsically high--dimensional displays infewer, usually two, dimensions. This goal is achieved by representing eachsample by a pair of points, say $R_i$ and $r_i$, so that a theoreticaldistance between the $i$-th and $j$-th samples is represented twice, onceby the distance between $R_i$ and $r_j$ and once by the distance between$R_j$ and $r_i$. Self--distances between $R_i$ and $r_i$ need not be zero.The mathematical conditions for unfolding to exhibit symmetry are established.Algorithms for finding approximate fits, not constrained to be symmetric,are discussed and some examples are given.
Resumo:
This paper analyzes whether standard covariance matrix tests work whendimensionality is large, and in particular larger than sample size. Inthe latter case, the singularity of the sample covariance matrix makeslikelihood ratio tests degenerate, but other tests based on quadraticforms of sample covariance matrix eigenvalues remain well-defined. Westudy the consistency property and limiting distribution of these testsas dimensionality and sample size go to infinity together, with theirratio converging to a finite non-zero limit. We find that the existingtest for sphericity is robust against high dimensionality, but not thetest for equality of the covariance matrix to a given matrix. For thelatter test, we develop a new correction to the existing test statisticthat makes it robust against high dimensionality.