13 resultados para Dynamic state
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA
Resumo:
Dynamic Nuclear Polarization (DNP) is an emerging technique that could revolutionize the NMR study of small molecules at very low concentrations by the increase in sensitivity that results from transfer of polarization between electronic and nuclear spins. Although the underlying physics has been known for a long time, in the last few years there has been a lot of excitement on the chemistry and biology NMR community caused by the demonstration that the highly polarized nuclei that are prepared in solid state at very low temperatures (1-2 K) could be rapidly transferred to liquid samples at room temperature and studied in solution by conventional NMR techniques. In favorable cases several order of magnitude increases in sensitivity have been achieved. The technique is now mature enough that a commercial instrument is available. The efficiency of DNP depends on two crucial aspects: i) the efficiency of the nuclear polarization process and ii) the efficiency of the transfer from the initial solid state to the fluid state in which NMR is measured. The preferred areas of application (iii) will be dictated by situations in which the low concentration of the sample or its intrinsic low receptivity are the limiting factors .
Resumo:
Many revenue management (RM) industries are characterized by (a) fixed capacities in theshort term (e.g., hotel rooms, seats on an airline flight), (b) homogeneous products (e.g., twoairline flights between the same cities at similar times), and (c) customer purchasing decisionslargely influenced by price. Competition in these industries is also very high even with just twoor three direct competitors in a market. However, RM competition is not well understood andpractically all known implementations of RM software and most published models of RM donot explicitly model competition. For this reason, there has been considerable recent interestand research activity to understand RM competition. In this paper we study price competitionfor an oligopoly in a dynamic setting, where each of the sellers has a fixed number of unitsavailable for sale over a fixed number of periods. Demand is stochastic, and depending on howit evolves, sellers may change their prices at any time. This reflects the fact that firms constantly,and almost costlessly, change their prices (alternately, allocations at a price in quantity-basedRM), reacting either to updates in their estimates of market demand, competitor prices, orinventory levels. We first prove existence of a unique subgame-perfect equilibrium for a duopoly.In equilibrium, in each state sellers engage in Bertrand competition, so that the seller withthe lowest reservation value ends up selling a unit at a price that is equal to the equilibriumreservation value of the competitor. This structure hence extends the marginal-value conceptof bid-price control, used in many RM implementations, to a competitive model. In addition,we show that the seller with the lowest capacity sells all its units first. Furthermore, we extendthe results transparently to n firms and perform a number of numerical comparative staticsexploiting the uniqueness of the subgame-perfect equilibrium.
Resumo:
This paper presents a dynamic choice model in the attributespace considering rational consumers that discount the future. In lightof the evidence of several state-dependence patterns, the model isfurther extended by considering a utility function that allows for thedifferent types of behavior described in the literature: pure inertia,pure variety seeking and hybrid. The model presents a stationaryconsumption pattern that can be inertial, where the consumer only buysone product, or a variety-seeking one, where the consumer buys severalproducts simultane-ously. Under the inverted-U marginal utilityassumption, the consumer behaves inertial among the existing brands forseveral periods, and eventually, once the stationary levels areapproached, the consumer turns to a variety-seeking behavior. An empiricalanalysis is run using a scanner database for fabric softener andsignificant evidence of hybrid behavior for most attributes is found,which supports the functional form considered in the theory.
Resumo:
In this paper we study the macroeconomic effects of an inflow oflow-skilled workers into an economy where there is capital accumulation and two types of agents. We find that there are substantial dynamic effects following unexpected migrations with adjustments that resemble those triggered by a sudden disruption of the capital stock. We look at the interrelations between these dynamic effects and three different fiscal systems for the redistribution of income and find that these schemes can change the dynamics and lead to prolonged periods of adjustments. Theaggregate welfare implications are sensitive to the welfare system: while there are welfare gains without redistribution, these gains may be turned into costs when the state engages in redistribution.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Relevant features of the dynamic structure function S(q,¿) in 3-4He mixtures at zero temperature are investigated starting from known properties of the ground state. Sum rules are used to fix rigorous constraints to the different contributions to S(q,¿), coming from 3He and 4He elementary excitations, as well as to explore the role of the cross term S(3,4)(q,¿). Both the low-q (phonon-roton 4He excitations and 1p-1h 3He excitations) and high-q (deep-inelastic-scattering) ranges are discussed.
Resumo:
The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.
Resumo:
The dependence of the dynamic properties of liquid metals and Lennard-Jones fluids on the characteristics of the interaction potentials is analyzed. Molecular-dynamics simulations of liquids in analogous conditions but assuming that their particles interact either through a Lennard-Jones or a liquid-metal potential were carried out. The Lennard-Jones potentials were chosen so that both the effective size of the particles and the depth of the potential well were very close to those of the liquid-metal potentials. In order to investigate the extent to which the dynamic properties of liquids depend on the short-range attractive interactions as well as on the softness of the potential cores, molecular-dynamics simulations of the same systems but assuming purely repulsive interactions with the same potential cores were also performed. The study includes both singleparticle dynamic properties, such as the velocity autocorrelation functions, and collective dynamic properties, such as the intermediate scattering funcfunctions, and collective dynamic properties, such as the intermediate scattering functions, the dynamic structure factors, the longitudinal and transverse current correlations, and the transport coefficients.
Resumo:
This paper describes the state of the art of secure ad hoc routing protocols and presents SEDYMO, a mechanism to secure a dynamic multihop ad hoc routing protocol. The proposed solution defeats internal and external attacks usinga trustworthiness model based on a distributed certification authority. Digital signatures and hash chains are used to ensure the correctness of the protocol. The protocol is compared with other alternatives in terms of security strength, energy efficiency and time delay. Both computational and transmission costs are considered and it is shown that the secure protocol overhead is not a critical factor compared to the high network interface cost.
Resumo:
Available empirical evidence regarding the degree of symmetry between European economies in the context of Monetary Unification is not conclusive. This paper offers new empirical evidence concerning this issue related to the manufacturing sector. Instead of using a static approach as most empirical studies do, we analyse the dynamic evolution of shock symmetry using a state-space model. The results show a clear reduction of asymmetries in terms of demand shocks between 1975 and 1996, with an increase in terms of supply shocks at the end of the period.