17 resultados para Dynamic Light Scattering

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the light-scattering spectrum of a suspension in a viscoelastic fluid under density and velocity gradients. When a density gradient is present, the dynamic structure factor exhibits universality in the sense that its expression depends only on the reduced frequency and the reduced density gradient. For a velocity gradient, however, the universality breaks down. In this last case we have found a transition point from one to three characteristic frequencies in the spectrum, which is governed by the value of the external gradient. The presence of the viscoelastic time scales introduces a shift in the ``critical¿¿ point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine self‐consistently the time evolution of particle size and their number density in situ multi‐angle polarization‐sensitive laser light scattering was used. Cross‐polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135° and ex situ transmission electronic microscopy analysis demonstrate the existence of nonspherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross‐polarization intensities is accompanied by low‐frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian free molecule coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian free molecule coagulation model including a log‐normal particle size distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scattering characteristics of multilayer fluoride coatings for 193 nm deposited by ion beam sputtering and the related interfacial roughnesses are investigated. Quarter- and half-wave stacks of MgF2 and LaF3 with increasing thickness are deposited onto CaF2 and fused silica and are systematically characterized. Roughness measurements carried out by atomic force microscopy reveal the evolution of the power spectral densities of the interfaces with coating thickness. Backward-scattering measurements are presented, and the results are compared with theoretical predictions that use different models for the statistical correlation of interfacial roughnesses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the calcium-induced aggregation of phosphatidylserine liposomes is probed by means of the analysis of the kinetics of such process as well as the aggregate morphology. This novel characterization of liposome aggregation involves the use of static and dynamic light-scattering techniques to obtain kinetic exponents and fractal dimensions. For salt concentrations larger than 5 mM, a diffusion-limited aggregation regime is observed and the Brownian kernel properly describes the time evolution of the diffusion coefficient. For slow kinetics, a slightly modified multiple contact kernel is required. In any case, a time evolution model based on the numerical resolution of Smoluchowski's equation is proposed in order to establish a theoretical description for the aggregating system. Such a model provides an alternative procedure to determine the dimerization constant, which might supply valuable information about interaction mechanisms between phospholipid vesicles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest treball es descriu un nou mètode per a la síntesi de nanopartícules de platí per mitjà de metallosurfactants preparats amb fosfines ambifíliques. L’objectiu bàsic consisteix en aprofitar la capacitat d’aquests compostos per formar agregats col·loïdals a fi d’afavorir i intentar controlar els processos de formació de nanopartícules metàl·liques. S’han emprat tres fosfines ambifíliques {Ph2P(CH2)nSO3Na; n=2 (L2), n=6 (L6), n=10 (L10)} per tal d’estudiar la influència de la llargada de la cadena hidrocarbonada en el procés de formació de nanopartícules. D’aquests tres lligands, s’han sintetitzat i caracteritzat els compostos L6 i L10 seguint els procediments descrits en estudis anteriors Per a la síntesi i estudis de complexació amb K2PtCl4, s’han fet servir unes condicions de treball que faciliten la formació de nanopartícules de platí. L’anàlisi dels complexos de platí existents en el medi de reacció mitjançant RMN 31P ha demostrat que es formen especies cis-[PtCl2(Ln)] en tots els casos i que l’augment de la temperatura de reacció afavoreix la formació de complexos quelats (P,O). Aquest fenomen és més important en els lligands amb la cadena hidrocarbonada més curta (L2&& L6& L10). S’han dut a terme estudis d’adsorció i d’agregació mitjançant mesures de tensiometria i de Dynamic Ligth Scattering (DLS) per tal de poder determinar les propietats tensioactives dels metallosurfactants i comparar-les amb estudis anteriors. Finalment, per tal d’obtenir nanopartícules de platí, s’ha dut a terme la reducció després de la formació dels metallosurfactants fent servir borhidrur de sodi com agent reductor. La caracterització de les nanopartícules s’ha centrat en l’ús de tècniques de microscòpia electrònica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface topography and light scattering were measured on 15 samples ranging from those having smooth surfaces to others with ground surfaces. The measurement techniques included an atomic force microscope, mechanical and optical profilers, confocal laser scanning microscope, angle-resolved scattering, and total scattering. The samples included polished and ground fused silica, silicon carbide, sapphire, electroplated gold, and diamond-turned brass. The measurement instruments and techniques had different surface spatial wavelength band limits, so the measured roughnesses were not directly comparable. Two-dimensional power spectral density (PSD) functions were calculated from the digitized measurement data, and we obtained rms roughnesses by integrating areas under the PSD curves between fixed upper and lower band limits. In this way, roughnesses measured with different instruments and techniques could be directly compared. Although smaller differences between measurement techniques remained in the calculated roughnesses, these could be explained mostly by surface topographical features such as isolated particles that affected the instruments in different ways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The compounds responsible for the colours and decorations in glass and glazed ceramics include: colouring agents (transition metal ions), pigments (micro-and nano-precipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron Radiation micro-X-ray Diffraction has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth dependent composition and crystal structure. Their nature and distribution across the glass/glazes decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro- XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and renaissance tin glazed ceramics from the 10th to the 17th century AD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a model for transport in multiply scattering media based on a three-dimensional generalization of the persistent random walk. The model assumes that photons move along directions that are parallel to the axes. Although this hypothesis is not realistic, it allows us to solve exactly the problem of multiple scattering propagation in a thin slab. Among other quantities, the transmission probability and the mean transmission time can be calculated exactly. Besides being completely solvable, the model could be used as a benchmark for approximation schemes to multiple light scattering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the implementation details of a coded structured light system for rapid shape acquisition of unknown surfaces. Such techniques are based on the projection of patterns onto a measuring surface and grabbing images of every projection with a camera. Analyzing the pattern deformations that appear in the images, 3D information of the surface can be calculated. The implemented technique projects a unique pattern so that it can be used to measure moving surfaces. The structure of the pattern is a grid where the color of the slits are selected using a De Bruijn sequence. Moreover, since both axis of the pattern are coded, the cross points of the grid have two codewords (which permits to reconstruct them very precisely), while pixels belonging to horizontal and vertical slits have also a codeword. Different sets of colors are used for horizontal and vertical slits, so the resulting pattern is invariant to rotation. Therefore, the alignment constraint between camera and projector considered by a lot of authors is not necessary

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relevant features of the dynamic structure function S(q,¿) in 3-4He mixtures at zero temperature are investigated starting from known properties of the ground state. Sum rules are used to fix rigorous constraints to the different contributions to S(q,¿), coming from 3He and 4He elementary excitations, as well as to explore the role of the cross term S(3,4)(q,¿). Both the low-q (phonon-roton 4He excitations and 1p-1h 3He excitations) and high-q (deep-inelastic-scattering) ranges are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependence of the dynamic properties of liquid metals and Lennard-Jones fluids on the characteristics of the interaction potentials is analyzed. Molecular-dynamics simulations of liquids in analogous conditions but assuming that their particles interact either through a Lennard-Jones or a liquid-metal potential were carried out. The Lennard-Jones potentials were chosen so that both the effective size of the particles and the depth of the potential well were very close to those of the liquid-metal potentials. In order to investigate the extent to which the dynamic properties of liquids depend on the short-range attractive interactions as well as on the softness of the potential cores, molecular-dynamics simulations of the same systems but assuming purely repulsive interactions with the same potential cores were also performed. The study includes both singleparticle dynamic properties, such as the velocity autocorrelation functions, and collective dynamic properties, such as the intermediate scattering funcfunctions, and collective dynamic properties, such as the intermediate scattering functions, the dynamic structure factors, the longitudinal and transverse current correlations, and the transport coefficients.