16 resultados para Drug Screening Assays

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a la Satandford University, EEUU, entre 2007 i 2009. Els darrers anys, hi ha hagut un avanç espectacular en la tecnologia aplicada a l’anàlisi del genoma i del proteoma (microarrays, PCR quantitativa real time, electroforesis dos dimensions, espectroscòpia de masses, etc.) permetent la resolució de mostres complexes i la detecció quantitativa de diferents gens i proteïnes en un sol experiment. A més a més, la seva importància radica en la capacitat d’identificar potencials dianes terapèutiques i possibles fàrmacs, així com la seva aplicació en el disseny i desenvolupament de noves eines de diagnòstic. L’aplicabilitat de les tècniques actuals, però, està limitada al nivell al que el teixit pot ser disseccionat. Si bé donen valuosa informació sobre expressió de gens i proteïnes implicades en una malaltia o en resposta a un fàrmac per exemple, en cap cas, s’obté una informació in situ ni es pot obtenir informació espacial o una resolució temporal, així com tampoc s’obté informació de sistemes in vivo. L’objectiu d’aquest projecte és desenvolupar i validar un nou microscopi, d’alta resolució, ultrasensible i de fàcil ús, que permeti tant la detecció de metabòlits, gens o proteïnes a la cèl•lula viva en temps real com l’estudi de la seva funció. Obtenint així una descripció detallada de les interaccions entre proteïnes/gens que es donen dins la cèl•lula. Aquest microscopi serà un instrument sensible, selectiu, ràpid, robust, automatitzat i de cost moderat que realitzarà processos de cribatge d’alt rendiment (High throughput screening) genètics, mèdics, químics i farmacèutics (per aplicacions diagnòstiques i de identificació i selecció de compostos actius) de manera més eficient. Per poder realitzar aquest objectius el microscopi farà ús de les més noves tecnologies: 1)la microscopia òptica i d’imatge, per millorar la visualització espaial i la sensibilitat de l’imatge; 2) la utilització de nous mètodes de detecció incloent els més moderns avanços en nanopartícules; 3) la creació de mètodes informàtics per adquirir, emmagatzemar i processar les imatges obtingudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surfactants are used as additives in topical pharmaceuticals and drug delivery systems. The biocompatibility of amino acid-based surfactants makes them highly suitable for use in these fields, but tests are needed to evaluate their potential toxicity. Here we addressed the sensitivity of tumor (HeLa, MCF-7) and non-tumor (3T3, 3T6, HaCaT, NCTC 2544) cell lines to the toxic effects of lysine-based surfactants by means of two in vitro endpoints (MTT and NRU). This comparative assay may serve as a reliable approach for predictive toxicity screening of chemicals prior to pharmaceutical applications. After 24-h of cell exposure to surfactants, differing toxic responses were observed. NCTC 2544 and 3T6 cell lines were the most sensitive, while both tumor cells and 3T3 fibroblasts were more resistant to the cytotoxic effects of surfactants. IC50-values revealed that cytotoxicity was detected earlier by MTT assay than by NRU assay, regardless of the compound or cell line. The overall results showed that surfactants with organic counterions were less cytotoxic than those with inorganic counterions. Our findings highlight the relevance of the correct choice and combination of cell lines and bioassays in toxicity studies for a safe and reliable screen of chemicals with potential interest in pharmaceutical industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decades drug discovery practice has escaped from the complexity of the formerly used phenotypic screening in animals to focus on assessing drug effects on isolated protein targets in the search for drugs that exclusively and potently hit one selected target, thought to be critical for a given disease, while not affecting at all any other target to avoid the occurrence of side-effects. However, reality does not conform to these expectations, and, conversely, this approach has been concurrent with increased attrition figures in late-stage clinical trials, precisely due to lack of efficacy and safety. In this context, a network biology perspective of human disease and treatment has burst into the drug discovery scenario to bring it back to the consideration of the complexity of living organisms and particularly of the (patho)physiological environment where protein targets are (mal)functioning and where drugs have to exert their restoring action. Under this perspective, it has been found that usually there is not one but several disease-causing genes and, therefore, not one but several relevant protein targets to be hit, which do not work on isolation but in a highly interconnected manner, and that most known drugs are inherently promiscuous. In this light, the rationale behind the currently prevailing single-target-based drug discovery approach might even seem a Utopia, while, conversely, the notion that the complexity of human disease must be tackled with complex polypharmacological therapeutic interventions constitutes a difficult-torefuse argument that is spurring the development of multitarget therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. BoxBehnken experimental design was employed as statistical tool to optimize the formulation variables, X1 (Cremophor® EL), X2 (Capmul® MCM-C8), and X3 (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X1, X2, and X3) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in td parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis (TFG) the results of the comparison of three assays for the measurement of AhR ligand activity are exposed. This study was part of a collaborative project aiming at the characterization of the AhR signaling activities of known naturally occurring compounds to explore the potential of using non-toxic compounds to treat inflammatory diseases via oral administration. The first goal of this project was to find an assay able to measure AhR-activity, so the comparison of different assays has been done in order to find the most convenient one according to the efficiency, sensitivity and precision. Moreover, other elements with operational nature such as price, toxicity of components or ease of use has been considered. From the use of compounds known from the literature to be AhR ligands, three assays have been tested: (1) P450-GloTM CYP1A2 Induction/Inhibition assay, (2) quantitative Polymerase Chain Reaction (qPCR) and (3) DR. CALUX® Bioassay. Moreover, a different experiment using the last assay was performed for the study in vivo of the transport of the compounds tested. The results of the TFG suggested the DR. CALUX® Bioassay as the most promising assay to be used for the screening of samples as AhR-ligands because it is quicker, easier to handle and less expensive than qPCR and more reproducible than the CYP1A2 Induction/Inhibition assay. Moreover, the use of this assay allowed having a first idea of which compounds are uptaken by the epithelial barrier and in with direction the transport happens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first total synthesis of the indole alkaloids ()-aplicyanins A, B and E, plus seventeen analogs, all in racemic form is reported. Modifications to the parent compound included changing the number of bromine substituents on the indole, the groups on the indole nitrogen (H, Me or OMe), and/or the oxidation level of the heterocyclic core tetrahydropyrimidine. Each compound was screened against three human tumor cell lines, and fourteen of the newly synthesized compounds showed considerable cytotoxicity. The assay results were used to establish structure-activity relationships. These results suggest that the acetyl group moiety on the imine nitrogen, and the bromine at position 5 of the indole, are both critical to activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid aggregation is linked to a large number of human disorders, from neurodegenerative diseases as Alzheimer"s disease (AD) or spongiform encephalopathies to non-neuropathic localized diseases as type II diabetes and cataracts. Because the formation of insoluble inclusion bodies (IBs) during recombinant protein production in bacteria has been recently shown to share mechanistic features with amyloid self-assembly, bacteria have emerged as a tool to study amyloid aggregation. Herein we present a fast, simple, inexpensive and quantitative method for the screening of potential anti-aggregating drugs. This method is based on monitoring the changes in the binding of thioflavin-S to intracellular IBs in intact Eschericchia coli cells in the presence of small chemical compounds. This in vivo technique fairly recapitulates previous in vitro data. Here we mainly use the Alzheimer"s related beta-amyloid peptide as a model system, but the technique can be easily implemented for screening inhibitors relevant for other conformational diseases simply by changing the recombinant amyloid protein target. Indeed, we show that this methodology can be also applied to the evaluation of inhibitors of the aggregation of tau protein, another amyloidogenic protein with a key role in AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decades drug discovery practice has escaped from the complexity of the formerly used phenotypic screening in animals to focus on assessing drug effects on isolated protein targets in the search for drugs that exclusively and potently hit one selected target, thought to be critical for a given disease, while not affecting at all any other target to avoid the occurrence of side-effects. However, reality does not conform to these expectations, and, conversely, this approach has been concurrent with increased attrition figures in late-stage clinical trials, precisely due to lack of efficacy and safety. In this context, a network biology perspective of human disease and treatment has burst into the drug discovery scenario to bring it back to the consideration of the complexity of living organisms and particularly of the (patho)physiological environment where protein targets are (mal)functioning and where drugs have to exert their restoring action. Under this perspective, it has been found that usually there is not one but several disease-causing genes and, therefore, not one but several relevant protein targets to be hit, which do not work on isolation but in a highly interconnected manner, and that most known drugs are inherently promiscuous. In this light, the rationale behind the currently prevailing single-target-based drug discovery approach might even seem a Utopia, while, conversely, the notion that the complexity of human disease must be tackled with complex polypharmacological therapeutic interventions constitutes a difficult-torefuse argument that is spurring the development of multitarget therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid aggregation is linked to a large number of human disorders, from neurodegenerative diseases as Alzheimer"s disease (AD) or spongiform encephalopathies to non-neuropathic localized diseases as type II diabetes and cataracts. Because the formation of insoluble inclusion bodies (IBs) during recombinant protein production in bacteria has been recently shown to share mechanistic features with amyloid self-assembly, bacteria have emerged as a tool to study amyloid aggregation. Herein we present a fast, simple, inexpensive and quantitative method for the screening of potential anti-aggregating drugs. This method is based on monitoring the changes in the binding of thioflavin-S to intracellular IBs in intact Eschericchia coli cells in the presence of small chemical compounds. This in vivo technique fairly recapitulates previous in vitro data. Here we mainly use the Alzheimer"s related beta-amyloid peptide as a model system, but the technique can be easily implemented for screening inhibitors relevant for other conformational diseases simply by changing the recombinant amyloid protein target. Indeed, we show that this methodology can be also applied to the evaluation of inhibitors of the aggregation of tau protein, another amyloidogenic protein with a key role in AD.