28 resultados para Dopamine Agonists

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of new benzolactam derivatives was synthesized and the derivatives were evaluated for theiraffinities at the dopamine D1, D2, and D3 receptors. Some of these compounds showed high D2 and/orD3 affinity and selectivity over the D1 receptor. The SAR study of these compounds revealed structuralcharacteristics that decisively influenced their D2 and D3 affinities. Structural models of the complexesbetween some of the most representative compounds of this series and the D2 and D3 receptors wereobtained with the aim of rationalizing the observed experimental results. Moreover, selected compoundsshowed moderate binding affinity on 5-HT2A which could contribute to reducing the occurrence of extrapyramidalside effects as potential antipsychotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic adaptations of one"s behavior by means of performance monitoring are a central function of the human executive system, that underlies considerable interindividual variation. Converging evidence from electrophysiological and neuroimaging studies in both animals and humans hints atthe importance ofthe dopaminergic system forthe regulation of performance monitoring. Here, we studied the impact of two polymorphisms affecting dopaminergic functioning in the prefrontal cortex [catechol-O-methyltransferase (COMT) Val108/158Met and dopamine D4 receptor (DRD4) single-nucleotide polymorphism (SNP)-521] on neurophysiological correlates of performance monitoring. We applied a modified version of a standard flanker task with an embedded stop-signal task to tap into the different functions involved, particularly error monitoring, conflict detection and inhibitory processes. Participants homozygous for the DRD4 T allele produced an increased error-related negativity after both choice errors and failed inhibitions compared with C-homozygotes. This was associated with pronounced compensatory behavior reflected in higher post-error slowing. No group differences were seen in the incompatibility N2, suggesting distinct effects of the DRD4 polymorphism on error monitoring processes. Additionally, participants homozygous for the COMTVal allele, with a thereby diminished prefrontal dopaminergic level, revealed increased prefrontal processing related to inhibitory functions, reflected in the enhanced stop-signal-related components N2 and P3a. The results extend previous findings from mainly behavioral and neuroimaging data on the relationship between dopaminergic genes and executive functions and present possible underlying mechanisms for the previously suggested association between these dopaminergic polymorphisms and psychiatric disorders as schizophrenia or attention deficit hyperactivity disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale Methylone, a new drug of abuse sold as"bath salts' has similar effects to ecstasy or cocaine. Objective We have investigated changes in dopaminergic and serotoninergic markers, indicative of neuronal damage, induced by methylone in the frontal cortex, hippocampus and striatum of mice and according two different treatment schedules. Methods Methylone was given subcutaneously to male Swiss CD1 mice and at an ambient temperature of 26ºC. Treatment A: three doses of 25 mg/Kg at 3.5 h interval between doses for two consecutive days. Treatment B: four doses of 25 mg/Kg at 3 h interval in one day. Results Repeated methylone administration induced hyperthermia and a significant loss in body weight. Following treatment A, methylone induced transient dopaminergic (frontal cortex) and serotoninergic (hippocampus) impairment. Following treatment B, transient dopaminergic (frontal cortex) and serotonergic (frontal cortex and hippocampus) changes 7 days after treatment were found. We found evidence of astrogliosis in the CA1 and the dentate gyrus of the hippocampus following treatment B. The animals also showed an increase in immobility time in the forced swim test, pointing to a depressive-like behavior. In cultured cortical neurons, methylone (for 24 and 48 h) did not induce a remarkable cytotoxic effect. Conclusions The neural effects of methylone differ depending upon the treatment schedule. Neurochemical changes elicited by methylone are apparent when administered at an elevated ambient temperature, four times per day at 3 h intervals, which is in accordance with its short half-life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el periodo 2005-2008 hemos publicado tres artículos sobre las alteraciones de los astrocitos reactivos en el cerebro durante el envejecimiento. En el primer estudio, evaluamos la capacidad neuroprotectora de los astrocitos en un modelo experimental in vitro de envejecimiento. Los cambios en el estrés oxidativo, la captación del glutamato y la expresión proteica fueron evaluados en los astrocitos corticales de rata cultivados durante 10 y 90 días in vitro (DIV). Los astrocitos envejecidos tenían una capacidad reducida de mantener la supervivencia neuronal. Estos resultados indican que los astrocitos pueden perder parcialmente su capacidad neuroprotectora durante el envejecimiento. En el segundo estudio el factor neurotrófico derivado de la línea glial (GDNF) fue probado para observar sus efectos neurotróficos contra la atrofia neuronal que causa déficits cognitivos en la vejez. Las ratas envejecidas Fisher 344 con deficiencias en el laberinto de Morris recibieron inyecciones intrahippocampales de un vector lentiviral que codifica GDNF humano en los astrocitos o del mismo vector que codifica la proteína fluorescente verde humana como control. El GDNF secretado por los astrocitos mejoró la función de la neurona como se muestra por aumentos locales en la síntesis de los neurotransmisores acetilcolina, dopamina y serotonina. El aprendizaje espacial y la prueba de memoria demostraron un aumento significativo en las capacidades cognitivas debido a la exposición de GDNF, mientras que las ratas control mantuvieron sus resultados al nivel del azar. Estos resultados confirman el amplio espectro de la acción neurotrófica del GDNF y abre nuevas posibilidades de terapia génica para reducir la neurodegeneración asociada al envejecimiento. En el último estudio, examinamos cambios en la fosforilación de tau, el estrés oxidativo y la captación de glutamato en los cultivos primarios de astrocitos corticales de ratones neonatos de senescencia acelerada (SAMP8) y ratones resistentes a la senescencia (SAMR1). Nuestros resultados indican que las alteraciones en cultivos del astrocitos de los ratones SAMP8 son similares a las detectadas en cerebros enteros de los ratones SAMP8 de 1-5 meses de edad. Por otra parte, nuestros resultados sugieren que esta preparación in vitro es adecuada para estudiar en este modelo murino el envejecimiento temprano y sus procesos moleculares y celulares.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A central feature of drugs of abuse is to induce gene expression in discrete brain structures that are critically involved in behavioral responses related to addictive processes. Although extracellular signal-regulated kinase (ERK) has been implicated in several neurobiological processes, including neuronal plasticity, its role in drug addiction remains poorly understood. This study was designed to analyze the activation of ERK by cocaine, its involvement in cocaine-induced early and long-term behavioral effects, as well as in gene expression. We show, by immunocytochemistry, that acute cocaine administration activates ERK throughout the striatum, rapidly but transiently. This activation was blocked when SCH 23390 [a specific dopamine (DA)-D1 antagonist] but not raclopride (a DA-D2 antagonist) was injected before cocaine. Glutamate receptors of NMDA subtypes also participated in ERK activation, as shown after injection of the NMDA receptor antagonist MK 801. The systemic injection of SL327, a selective inhibitor of the ERK kinase MEK, before cocaine, abolished the cocaine-induced ERK activation and decreased cocaine-induced hyperlocomotion, indicating a role of this pathway in events underlying early behavioral responses. Moreover, the rewarding effects of cocaine were abolished by SL327 in the place-conditioning paradigm. Because SL327 antagonized cocaine-induced c-fos expression and Elk-1 hyperphosphorylation, we suggest that the ERK intracellular signaling cascade is also involved in the prime burst of gene expression underlying long-term behavioral changes induced by cocaine. Altogether, these results reveal a new mechanism to explain behavioral responses of cocaine related to its addictive properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a devastating mental disorder that has a largeimpact on the quality of life for those who are afflicted and isvery costly for families and society.[1] Although the etiology ofschizophrenia is still unknown and no cure has yet beenfound, it is treatable, and pharmacological therapy often producessatisfactory results. Among the various antipsychoticdrugs in use, clozapine is widely recognized as one ofthemost clinically effective agents, even if it elicits significant sideeffects such as metabolic disorders and agranulocytosis. Clozapineand the closely related compound olanzapine are goodexamples ofdrug s with a complex multi-receptor profile ;[2]they have affinities toward serotonin, dopamine, a adrenergic,muscarinic, and histamine receptors, among others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: 3, 4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug widely abused by young people. The endocannabinoid system is involved in the addictive processes induced by different drugs of abuse. However, the role of this system in the pharmacological effects of MDMA has not been yet clarified.Methods: Locomotion, body temperature and anxiogenic-like responses were evaluated after acute MDMA administration in CB1 knockout mice. Additionally, MDMA rewarding properties were investigated in the place conditioning and the intravenous self-administration paradigms. Extracellular levels of DA in the nucleus accumbens were also analyzed after a single administration of MDMA by in vivo microdialysis. Results: Acute MDMA administration increased locomotor activity, body temperature and anxiogenic-like responses in wild type mice, but these responses were lower or abolished in knockout animals. MDMA produced similar conditioned place preference and increased dopamine extracellular levels in the nucleus accumbens in both genotypes. Nevertheless, CB1 knockout mice failed to self-administer MDMA at any of the doses used. Conclusions: These results indicate that CB1 cannabinoid receptors play an important role in the acute prototypical effects of MDMA, and are essential in the acquisition of an operant behavior to self-administer this drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3, 4-Methylenedioxymethamphetamine (MDMA) and cannabis are widely abused illicit drugs that are frequently consumed in combination. Interactions between these two drugs have been reported in several pharmacological responses observed in animals, such as body temperature, anxiety, cognition and reward. However, the interaction between MDMA and cannabis in addictive processes such as physical dependence has not been elucidated yet. In this study, the effects of acute and chronic MDMA were evaluated on the behavioral manifestations of Δ9-tetrahydrocannabinol (THC) abstinence in mice. THC withdrawal syndrome was precipitated by injecting the cannabinoid antagonist rimonabant (10 mg/kg, i.p.) in mice chronically treated with THC, and receiving MDMA (2.5, 5 and 10 mg/kg i.p.) or saline just before the withdrawal induction or chronically after the THC administration. Both, chronic and acute MDMA decreased in a dose-dependent manner the severity of THC withdrawal. In vivo microdialysis experiments showed that acute MDMA (5 mg/kg, i.p.) administration increased extracellular serotonin levels in the prefrontal cortex, but not dopamine levels in the nucleus accumbens. Our results also indicate that the attenuation of THC abstinence symptoms was not due to a direct interaction between rimonabant and MDMA nor to the result of the locomotor stimulating effects of MDMA. The modulation of the cannabinoid withdrawal syndrome by acute or chronic MDMA suggests a possible mechanism to explain the associated consumption of these two drugs in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex etiology of schizophrenia has prompted researchers to develop clozapine-related multitargetstrategies to combat its symptoms. Here we describe a series of new 6-aminomethylbenzofuranones in aneffort to find new chemical structures with balanced affinities for 5-HT2 and dopamine receptors. Throughbiological and computational studies of 5-HT2A and D2 receptors, we identified the receptor serine residuesS3.36 and S5.46 as the molecular keys to explaining the differences in affinity and selectivity betweenthese new compounds for this group of receptors. Specifically, the ability of these compounds to establishone or two H-bonds with these key residues appears to explain their difference in affinity. In addition, wedescribe compound 2 (QF1004B) as a tool to elucidate the role of 5-HT2C receptors in mediating antipsychoticeffects and metabolic adverse events. The compound 16a (QF1018B) showed moderate to high affinitiesfor D2 and 5-HT2A receptors, and a 5-HT2A/D2 ratio was predictive of an atypical antipsychotic profile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.