63 resultados para Discrete Fourier transforms
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[superscript] / T d[superscript] and the weighted tail-type integrals of its Fourier transform/series. Sharpness of obtained results in particular is given by the equivalence results for functions satisfying certain regular conditions. Applications include a quantitative form of the Riemann-Lebesgue lemma as well as several other questions in approximation theory and the theory of function spaces.
Resumo:
In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the currently widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or move in a fixed direction, e.g., rightward or upward. While both formulations are essentially equivalent, the present approach leads us to consider discrete Fourier transforms, which eventually results in obtaining explicit expressions for the wave functions in terms of finite sums and allows the use of efficient algorithms based on the fast Fourier transform. The wave functions here obtained govern the probability of finding the particle at any given location but determine as well the exit-time probability of the walker from a fixed interval, which is also analyzed.
Resumo:
The use of different kinds of nonlinear filtering in a joint transform correlator are studied and compared. The study is divided into two parts, one corresponding to object space and the second to the Fourier domain of the joint power spectrum. In the first part, phase and inverse filters are computed; their inverse Fourier transforms are also computed, thereby becoming the reference in the object space. In the Fourier space, the binarization of the power spectrum is realized and compared with a new procedure for removing the spatial envelope. All cases are simulated and experimentally implemented by a compact joint transform correlator.
Resumo:
The inversion problem concerning the windowed Fourier transform is considered. It is shown that, out of the infinite solutions that the problem admits, the windowed Fourier transform is the "optimal" solution according to a maximum-entropy selection criterion.
Resumo:
Un dels principals problemes quan es realitza un anàlisi de contorns és la gran quantitat de dades implicades en la descripció de la figura. Per resoldre aquesta problemàtica, s’aplica la parametrització que consisteix en obtenir d’un contorn unes dades representatives amb els mínims coeficients possibles, a partir dels quals es podrà reconstruir de nou sense pèrdues molt evidents d’informació. En figures de contorns tancats, la parametrització més estudiada és l’aplicació de la transformada discreta de Fourier (DFT). Aquesta s’aplica a la seqüència de valors que descriu el comportament de les coordenades x i y al llarg de tots els punts que formen el traç. A diferència, en els contorns oberts no es pot aplicar directament la DFT ja que per fer-ho es necessita que el valor de x i de y siguin iguals tan en el primer punt del contorn com en l’últim. Això és degut al fet que la DFT representa sense error senyals periòdics. Si els senyals no acaben en el mateix punt, representa que hi ha una discontinuïtat i apareixen oscil·lacions a la reconstrucció. L’objectiu d’aquest treball és parametritzar contorns oberts amb la mateixa eficiència que s’obté en la parametrització de contorns tancats. Per dur-ho a terme, s’ha dissenyat un programa que permet aplicar la DFT en contorns oberts mitjançant la modificació de les seqüencies de x i y. A més a més, també utilitzant el programari Matlab s’han desenvolupat altres aplicacions que han permès veure diferents aspectes sobre la parametrització i com es comporten els Descriptors El·líptics de Fourier (EFD). Els resultats obtinguts han demostrat que l’aplicació dissenyada permet la parametrització de contorns oberts amb compressions òptimes, fet que facilitarà l’anàlisi quantitatiu de formes en camps com l’ecologia, medicina, geografia, entre d’altres.
Resumo:
A method of making a multiple matched filter which allows the recognition of different characters in successive planes in simple conditions is proposed. The generation of the filter is based on recording on the same plate the Fourier transforms of the different patterns to be recognized, each of which is affected by different spherical phase factors because the patterns have been placed at different distances from the lens. This is proved by means of experiments with a triple filter which allows satisfactory recognition of three characters.
Resumo:
We develop an algorithm to simulate a Gaussian stochastic process that is non-¿-correlated in both space and time coordinates. The colored noise obeys a linear reaction-diffusion Langevin equation with Gaussian white noise. This equation is exactly simulated in a discrete Fourier space.
Resumo:
A method of making a multiple matched filter which allows the recognition of different characters in successive planes in simple conditions is proposed. The generation of the filter is based on recording on the same plate the Fourier transforms of the different patterns to be recognized, each of which is affected by different spherical phase factors because the patterns have been placed at different distances from the lens. This is proved by means of experiments with a triple filter which allows satisfactory recognition of three characters.
Resumo:
We give a geometric description of the interpolating varieties for the algebra of Fourier transforms of distributions (or Beurling ultradistributions) with compact support on the real line.
Resumo:
Many audio watermarking schemes divide the audio signal into several blocks such that part of the watermark is embedded into each of them. One of the key issues in these block-oriented watermarking schemes is to preserve the synchronisation, i.e. to recover the exact position of each block in the mark recovery process. In this paper, a novel time domain synchronisation technique is presented together with a new blind watermarking scheme which works in the Discrete Fourier Transform (DFT or FFT) domain. The combined scheme provides excellent imperceptibility results whilst achieving robustness against typical attacks. Furthermore, the execution of the scheme is fast enough to be used in real-time applications. The excellent transparency of the embedding algorithm makes it particularly useful for professional applications, such as the embedding of monitoring information in broadcast signals. The scheme is also compared with some recent results of the literature.
Resumo:
The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.
Resumo:
An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.
Resumo:
Un dels principals problemes quan es realitza un anàlisi de contorns és la gran quantitat de dades implicades en la descripció de la figura. Per resoldre aquesta problemàtica, s’aplica la parametrització que consisteix en obtenir d’un contorn unes dades representatives amb els mínims coeficients possibles, a partir dels quals es podrà reconstruir de nou sense pèrdues molt evidents d’informació. En figures de contorns tancats, la parametrització més estudiada és l’aplicació de la transformada discreta de Fourier (DFT). Aquesta s’aplica a la seqüència de valors que descriu el comportament de les coordenades x i y al llarg de tots els punts que formen el traç. A diferència, en els contorns oberts no es pot aplicar directament la DFT ja que per fer-ho es necessita que el valor de x i de y siguin iguals tan en el primer punt del contorn com en l’últim. Això és degut al fet que la DFT representa sense error senyals periòdics. Si els senyals no acaben en el mateix punt, representa que hi ha una discontinuïtat i apareixen oscil·lacions a la reconstrucció. L’objectiu d’aquest treball és parametritzar contorns oberts amb la mateixa eficiència que s’obté en la parametrització de contorns tancats. Per dur-ho a terme, s’ha dissenyat un programa que permet aplicar la DFT en contorns oberts mitjançant la modificació de les seqüencies de x i y. A més a més, també utilitzant el programari Matlab s’han desenvolupat altres aplicacions que han permès veure diferents aspectes sobre la parametrització i com es comporten els Descriptors El·líptics de Fourier (EFD). Els resultats obtinguts han demostrat que l’aplicació dissenyada permet la parametrització de contorns oberts amb compressions òptimes, fet que facilitarà l’anàlisi quantitatiu de formes en camps com l’ecologia, medicina, geografia, entre d’altres.
Resumo:
In this paper the authors propose a new closed contour descriptor that could be seen as a Feature Extractor of closed contours based on the Discrete Hartley Transform (DHT), its main characteristic is that uses only half of the coefficients required by Elliptical Fourier Descriptors (EFD) to obtain a contour approximation with similar error measure. The proposed closed contour descriptor provides an excellent capability of information compression useful for a great number of AI applications. Moreover it can provide scale, position and rotation invariance, and last but not least it has the advantage that both the parameterization and the reconstructed shape from the compressed set can be computed very efficiently by the fast Discrete Hartley Transform (DHT) algorithm. This Feature Extractor could be useful when the application claims for reversible features and when the user needs and easy measure of the quality for a given level of compression, scalable from low to very high quality.