34 resultados para Dinamic Stability in Power Systems
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper aims to survey the techniques and methods described in literature to analyse and characterise voltage sags and the corresponding objectives of these works. The study has been performed from a data mining point of view
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
In this article, we consider solutions starting close to some linearly stable invariant tori in an analytic Hamiltonian system and we prove results of stability for a super-exponentially long interval of time, under generic conditions. The proof combines classical Birkhoff normal forms and a new method to obtain generic Nekhoroshev estimates developed by the author and L. Niederman in another paper. We will mainly focus on the neighbourhood of elliptic fixed points, the other cases being completely similar.
Resumo:
Fault location has been studied deeply for transmission lines due to its importance in power systems. Nowadays the problem of fault location on distribution systems is receiving special attention mainly because of the power quality regulations. In this context, this paper presents an application software developed in Matlabtrade that automatically calculates the location of a fault in a distribution power system, starting from voltages and currents measured at the line terminal and the model of the distribution power system data. The application is based on a N-ary tree structure, which is suitable to be used in this application due to the highly branched and the non- homogeneity nature of the distribution systems, and has been developed for single-phase, two-phase, two-phase-to-ground, and three-phase faults. The implemented application is tested by using fault data in a real electrical distribution power system
Resumo:
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.
Resumo:
Evolution of compositions in time, space, temperature or other covariates is frequentin practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of thesample, thus producing a transfer of mass from some components to other ones, butpreserving the total mass present in the system. This evolution is traditionally modelledas a system of ordinary di erential equations of the mass of each component. However,this kind of evolution can be decomposed into a compositional change, expressed interms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despiteof some subcompositions behaving linearly.The goal is to study the characteristics of such simplicial systems of di erential equa-tions such as linearity and stability. This is performed extracting the compositional differential equations from the mass equations. Then, simplicial derivatives are expressedin coordinates of the simplex, thus reducing the problem to the standard theory ofsystems of di erential equations, including stability. The characterisation of stabilityof these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and theassociated behaviour of the orbits are the main tools. For a three component system,these orbits can be plotted both in coordinates of the simplex or in a ternary diagram.A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is aradioactive decay
Resumo:
This paper focus on the problem of locating single-phase faults in mixed distribution electric systems, with overhead lines and underground cables, using voltage and current measurements at the sending-end and sequence model of the network. Since calculating series impedance for underground cables is not as simple as in the case of overhead lines, the paper proposes a methodology to obtain an estimation of zero-sequence impedance of underground cables starting from previous single-faults occurred in the system, in which an electric arc occurred at the fault location. For this reason, the signal is previously pretreated to eliminate its peaks voltage and the analysis can be done working with a signal as close as a sinus wave as possible
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
We analyze the stability of small bubbles in a closed system with fixed volume, temperature, and number of molecules. We show that there exists a minimum stable size of a bubble. Thus there exists a range of densities where no stable bubbles are allowed and the system has a homogeneous density which is lower than the coexistence density of the liquid. This becomes possible due to the finite liquid compressibility. Capillary analysis within the developed"modified bubble" model illustrates that the existence of the minimum bubble size is associated to the compressibility and it is not possible when the liquid is strictly incompressible. This finding is expected to have very important implications in cavitation and boiling.
Resumo:
Joint-stability in interindustry models relates to the mutual simultaneous consistency of the demand-driven and supply-driven models of Leontief and Ghosh, respectively. Previous work has claimed joint-stability to be an acceptable assumption from the empirical viewpoint, provided only small changes in exogenous variables are considered. We show in this note, however, that the issue has deeper theoretical roots and offer an analytical demonstration that shows the impossibility of consistency between demand-driven and supply-driven models.
Resumo:
The objective of this paper is preciselyto study the evolution of payment systems within the accession countries between 1996 and 2003 and compare them with those of the E.U. and the Eurozone countries
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
Dialogic learning and interactive groups have proved to be a useful methodological approach appliedin educational situations for lifelong adult learners. The principles of this approach stress theimportance of dialogue and equal participation also when designing the training activities. This paperadopts these principles as the basis for a configurable template that can be integrated in runtimesystems. The template is formulated as a meta-UoL which can be interpreted by IMS Learning Designplayers. This template serves as a guide to flexibly select and edit the activities at runtime (on the fly).The meta-UoL has been used successfully by a practitioner so as to create a real-life example, withpositive and encouraging results
Resumo:
This paper retakes previous work of the authors, about the relationship between non-quasi-competitiveness (the increase in price caused by an increase in the number of oligopolists) and stability of the equilibrium in the classical Cournot oligopoly model. Though it has been widely accepted in the literature that the loss of quasi-competitiveness is linked, in the long run as new firms entered the market, to instability of the model, the authors in their previous work put forward a model in which a situation of monopoly changed to duopoly losing quasi-competitiveness but maintaining the stability of the equilibrium. That model could not, at the time, be extended to any number of oligopolists. The present paper exhibits such an extension. An oligopoly model is shown in which the loss of quasi-competitiveness resists the presence in the market of as many firms as one wishes and where the successive Cournot's equilibrium points are unique and asymptotically stable. In this way, for the first time, the conjecture that non-quasi- competitiveness and instability were equivalent in the long run, is proved false.