32 resultados para Difference Schemes
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The space and time discretization inherent to all FDTD schemesintroduce non-physical dispersion errors, i.e. deviations ofthe speed of sound from the theoretical value predicted bythe governing Euler differential equations. A generalmethodologyfor computing this dispersion error via straightforwardnumerical simulations of the FDTD schemes is presented.The method is shown to provide remarkable accuraciesof the order of 1/1000 in a wide variety of twodimensionalfinite difference schemes.
Resumo:
The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
Peer-reviewed
Resumo:
We construct estimates of educational attainment for a sample of OECD countries using previously unexploited sources. We follow a heuristic approach to obtain plausible time profiles for attainment levels by removing sharp breaks in the data that seem to reflect changes in classification criteria. We then construct indicators of the information content of our series and a number of previously available data sets and examine their performance in several growth specifications. We find a clear positive correlation between data quality and the size and significance of human capital coefficients in growth regressions. Using an extension of the classical errors in variables model, we construct a set of meta-estimates of the coefficient of years of schooling in an aggregate Cobb-Douglas production function. Our results suggest that, after correcting for measurement error bias, the value of this parameter is well above 0.50.
Resumo:
We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations.
Resumo:
We extend Floquet theory for reducing nonlinear periodic difference systems to autonomous ones (actually linear) by using normal form theory.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
We investigate different models that are intended to describe the small mean free path regime of a kinetic equation, a particular attention being paid to the moment closure by entropy minimization. We introduce a specific asymptotic-induced numerical strategy which is able to treat the stiff terms of the asymptotic diffusive regime. We evaluate on numerics the performances of the method and the abilities of the reduced models to capture the main features of the full kinetic equation.
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
In the present paper we discuss and compare two different energy decomposition schemes: Mayer's Hartree-Fock energy decomposition into diatomic and monoatomic contributions [Chem. Phys. Lett. 382, 265 (2003)], and the Ziegler-Rauk dissociation energy decomposition [Inorg. Chem. 18, 1558 (1979)]. The Ziegler-Rauk scheme is based on a separation of a molecule into fragments, while Mayer's scheme can be used in the cases where a fragmentation of the system in clearly separable parts is not possible. In the Mayer scheme, the density of a free atom is deformed to give the one-atom Mulliken density that subsequently interacts to give rise to the diatomic interaction energy. We give a detailed analysis of the diatomic energy contributions in the Mayer scheme and a close look onto the one-atom Mulliken densities. The Mulliken density ρA has a single large maximum around the nuclear position of the atom A, but exhibits slightly negative values in the vicinity of neighboring atoms. The main connecting point between both analysis schemes is the electrostatic energy. Both decomposition schemes utilize the same electrostatic energy expression, but differ in how fragment densities are defined. In the Mayer scheme, the electrostatic component originates from the interaction of the Mulliken densities, while in the Ziegler-Rauk scheme, the undisturbed fragment densities interact. The values of the electrostatic energy resulting from the two schemes differ significantly but typically have the same order of magnitude. Both methods are useful and complementary since Mayer's decomposition focuses on the energy of the finally formed molecule, whereas the Ziegler-Rauk scheme describes the bond formation starting from undeformed fragment densities
Resumo:
Background: Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results:The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions: Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated. Finally, a significant proportion of the proteins identified had not been associated with softening, cold storage or chilling injury-altered fruit before; thus, comparative proteomics has proven to be a valuable tool for understanding fruit softening and postharvest.
Resumo:
Error-correcting codes and matroids have been widely used in the study of ordinary secret sharing schemes. In this paper, the connections between codes, matroids, and a special class of secret sharing schemes, namely, multiplicative linear secret sharing schemes (LSSSs), are studied. Such schemes are known to enable multiparty computation protocols secure against general (nonthreshold) adversaries.Two open problems related to the complexity of multiplicative LSSSs are considered in this paper. The first one deals with strongly multiplicative LSSSs. As opposed to the case of multiplicative LSSSs, it is not known whether there is an efficient method to transform an LSSS into a strongly multiplicative LSSS for the same access structure with a polynomial increase of the complexity. A property of strongly multiplicative LSSSs that could be useful in solving this problem is proved. Namely, using a suitable generalization of the well-known Berlekamp–Welch decoder, it is shown that all strongly multiplicative LSSSs enable efficient reconstruction of a shared secret in the presence of malicious faults. The second one is to characterize the access structures of ideal multiplicative LSSSs. Specifically, the considered open problem is to determine whether all self-dual vector space access structures are in this situation. By the aforementioned connection, this in fact constitutes an open problem about matroid theory, since it can be restated in terms of representability of identically self-dual matroids by self-dual codes. A new concept is introduced, the flat-partition, that provides a useful classification of identically self-dual matroids. Uniform identically self-dual matroids, which are known to be representable by self-dual codes, form one of the classes. It is proved that this property also holds for the family of matroids that, in a natural way, is the next class in the above classification: the identically self-dual bipartite matroids.