7 resultados para Design problems
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By anessential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur inmany compositional situations, such as household budget patterns, time budgets,palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful insuch situations. From consideration of such examples it seems sensible to build up amodel in two stages, the first determining where the zeros will occur and the secondhow the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
Cobre Las Cruces is a renowned copper mining company located in Sevilla, with unexpected problems in wireless communications that have a direct affectation in production. Therefore, the main goals are to improve the WiFi infrastructure, to secure it and to detect and prevent from attacks and from the installation of rogue (and non-authorized) APs. All of that integrated with the current ICT infrastructure.This project has been divided into four phases, although only two of them have been included into the TFC; they are the analysis of the current situation and the design of a WLAN solution.Once the analysis part was finished, some weaknesses were detected. Subjects such as lack of connectivity and control, ignorance about installed WiFi devices and their localization and state and, by and large, the use of weak security mechanisms were some of the problems found. Additionally, due to the fact that the working area became larger and new WiFi infrastructures were added, the first phase took more time than expected.As a result of the detailed analysis, some goals were defined to solve and it was designed a centralized approach able to cope with them. A solution based on 802.11i and 802.1x protocols, digital certificates, a probe system running as IDS/IPS and ligthweight APs in conjunction with a Wireless LAN Controller are the main features.
Resumo:
One of the main questions to solve when analysing geographically added information consists of the design of territorial units adjusted to the objectives of the study. This is related with the reduction of the effects of the Modificable Areal Unit Problem (MAUP). In this paper an optimisation model to solve regionalisation problems is proposed. This model seeks to reduce disadvantages found in previous works about automated regionalisation tools
Resumo:
One of the main questions to solve when analysing geographically added information consists of the design of territorial units adjusted to the objectives of the study. This is related with the reduction of the effects of the Modificable Areal Unit Problem (MAUP). In this paper an optimisation model to solve regionalisation problems is proposed. This model seeks to reduce disadvantages found in previous works about automated regionalisation tools
Resumo:
A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.
Resumo:
There is a concern that agriculture will no longer be able to meet, on a global scale, the growing demand for food. Facing such a challenge requires new patterns of thinking in the context of complexity and sustainability sciences. This paper, focused on the social dimension of the study and management of agricultural systems, suggests that rethinking the study of agricultural systems entails analyzing them as complex socio-ecological systems, as well as considering the differing thinking patterns of diverse stakeholders. The intersubjective nature of knowledge, as studied by different philosophical schools, needs to be better integrated into the study and management of agricultural systems than it is done so far, forcing us to accept that there are no simplistic solutions, and to seek a better understanding of the social dimension of agriculture. Different agriculture related problems require different policy and institutional approaches. Finally, the intersubjective nature of knowledge asks for the visualization of different framings and the power relations taking place in the decision-making process. Rethinking management of agricultural systems implies that policy making should be shaped by different principles: learning, flexibility, adaptation, scale-matching, participation, diversity enhancement and precaution hold the promise to significantly improve current standard management procedures.
Resumo:
Sudoku problems are some of the most known and enjoyed pastimes, with a never diminishing popularity, but, for the last few years those problems have gone from an entertainment to an interesting research area, a twofold interesting area, in fact. On the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares, are being actively used for experimental design, as in [8, 44, 39, 9]. On the other hand, Sudoku problems, as simple as they seem, are really hard structured combinatorial search problems, and thanks to their characteristics and behavior, they can be used as benchmark problems for refining and testing solving algorithms and approaches. Also, thanks to their high inner structure, their study can contribute more than studies of random problems to our goal of solving real-world problems and applications and understanding problem characteristics that make them hard to solve. In this work we use two techniques for solving and modeling Sudoku problems, namely, Constraint Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular shape, problems can be of any order, and solution existence is not guaranteed. With respect to the worst-case complexity, we prove that GSP with block regions of m rows and n columns with m = n is NP-complete. For studying the empirical hardness of GSP, we define a series of instance generators, that differ in the balancing level they guarantee between the constraints of the problem, by finely controlling how the holes are distributed in the cells of the GSP. Experimentally, we show that the more balanced are the constraints, the higher the complexity of solving the GSP instances, and that GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized by GSP. Finally, we provide a study of the correlation between backbone variables – variables with the same value in all the solutions of an instance– and hardness of GSP.