4 resultados para Data system
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Gaia is the most ambitious space astrometry mission currently envisaged and is a technological challenge in all its aspects. We describe a proposal for the payload data handling system of Gaia, as an example of a high-performance, real-time, concurrent, and pipelined data system. This proposal includes the front-end systems for the instrumentation, the data acquisition and management modules, the star data processing modules, and the payload data handling unit. We also review other payload and service module elements and we illustrate a data flux proposal.
Resumo:
Gaia is the most ambitious space astrometry mission currently envisaged and is a technological challenge in all its aspects. We describe a proposal for the payload data handling system of Gaia, as an example of a high-performance, real-time, concurrent, and pipelined data system. This proposal includes the front-end systems for the instrumentation, the data acquisition and management modules, the star data processing modules, and the payload data handling unit. We also review other payload and service module elements and we illustrate a data flux proposal.
Resumo:
We present a georeferenced photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 37°18’N). The photomosaic was generated from digital photographs acquired using the ARGO II seafloor imaging system during the 1996 LUSTRE cruise, which surveyed a ~1 km2 zone and provided a coverage of ~20% of the seafloor. The photomosaic has a pixel resolution of 15 mm and encloses the areas with known active hydrothermal venting. The final mosaic is generated after an optimization that includes the automatic detection of the same benthic features across different images (feature-matching), followed by a global alignment of images based on the vehicle navigation. We also provide software to construct mosaics from large sets of images for which georeferencing information exists (location, attitude, and altitude per image), to visualize them, and to extract data. Georeferencing information can be provided by the raw navigation data (collected during the survey) or result from the optimization obtained from imatge matching. Mosaics based solely on navigation can be readily generated by any user but the optimization and global alignment of the mosaic requires a case-by-case approach for which no universally software is available. The Lucky Strike photomosaics (optimized and navigated-only) are publicly available through the Marine Geoscience Data System (MGDS, http://www.marine-geo.org). The mosaic-generating and viewing software is available through the Computer Vision and Robotics Group Web page at the University of Girona (http://eia.udg.es/_rafa/mosaicviewer.html)
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment