3 resultados para Data reliability
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Contamination of weather radar echoes by anomalous propagation (anaprop) mechanisms remains a serious issue in quality control of radar precipitation estimates. Although significant progress has been made identifying clutter due to anaprop there is no unique method that solves the question of data reliability without removing genuine data. The work described here relates to the development of a software application that uses a numerical weather prediction (NWP) model to obtain the temperature, humidity and pressure fields to calculate the three dimensional structure of the atmospheric refractive index structure, from which a physically based prediction of the incidence of clutter can be made. This technique can be used in conjunction with existing methods for clutter removal by modifying parameters of detectors or filters according to the physical evidence for anomalous propagation conditions. The parabolic equation method (PEM) is a well established technique for solving the equations for beam propagation in a non-uniformly stratified atmosphere, but although intrinsically very efficient, is not sufficiently fast to be practicable for near real-time modelling of clutter over the entire area observed by a typical weather radar. We demonstrate a fast hybrid PEM technique that is capable of providing acceptable results in conjunction with a high-resolution terrain elevation model, using a standard desktop personal computer. We discuss the performance of the method and approaches for the improvement of the model profiles in the lowest levels of the troposphere.
Resumo:
Foreign trade statistics are the main data source to the study of international trade.However its accuracy has been under suspicion since Morgernstern published hisfamous work in 1963. Federico and Tena (1991) have resumed the question arguing thatthey can be useful in an adequate level of aggregation. But the geographical assignmentproblem remains unsolved. This article focuses on the spatial variable through theanalysis of the reliability of textile international data for 1913. A geographical biasarises between export and import series, but because of its quantitative importance it canbe negligible in an international scale.
Resumo:
Drift is an important issue that impairs the reliability of gas sensing systems. Sensor aging, memory effects and environmental disturbances produce shifts in sensor responses that make initial statistical models for gas or odor recognition useless after a relatively short period (typically few weeks). Frequent recalibrations are needed to preserve system accuracy. However, when recalibrations involve numerous samples they become expensive and laborious. An interesting and lower cost alternative is drift counteraction by signal processing techniques. Orthogonal Signal Correction (OSC) is proposed for drift compensation in chemical sensor arrays. The performance of OSC is also compared with Component Correction (CC). A simple classification algorithm has been employed for assessing the performance of the algorithms on a dataset composed by measurements of three analytes using an array of seventeen conductive polymer gas sensors over a ten month period.