9 resultados para DNA polymerase gene
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA) mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established. Methodology/Principal Findings: We investigated the relationship between mtDNA mutations and sarcopenia at the gene expression and biochemical levels using a mouse model that expresses a proofreading-deficient version (D257A) of the mitochondrial DNA Polymerase c, resulting in increased spontaneous mtDNA mutation rates. Gene expression profiling of D257A mice followed by Parametric Analysis of Gene Set Enrichment (PAGE) indicates that the D257A mutation is associated with a profound downregulation of gene sets associated with mitochondrial function. At the biochemical level, sarcopenia in D257A mice is associated with a marked reduction (35–50%) in the content of electron transport chain (ETC) complexes I, III and IV, all of which are partly encoded by mtDNA. D257A mice display impaired mitochondrial bioenergetics associated with compromised state-3 respiration, lower ATP content and a resulting decrease in mitochondrial membrane potential (Dym). Surprisingly, mitochondrial dysfunction was not accompanied by an increase in mitochondrial reactive oxygen species (ROS) production or oxidative damage. Conclusions/Significance: These findings demonstrate that mutations in mtDNA can be causal in sarcopenia by affecting the assembly of functional ETC complexes, the lack of which provokes a decrease in oxidative phosphorylation, without an increase in oxidative stress, and ultimately, skeletal muscle apoptosis and sarcopenia.
Resumo:
The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments.
Resumo:
Background: The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.
Resumo:
A cultivation-independent approach based on polymerase chain reaction (PCR)-amplified partial small subunit rRNA genes was used to characterize bacterial populations in the surface soil of a commercial pear orchard consisting of different pear cultivars during two consecutive growing seasons. Pyrus communis L. cvs Blanquilla, Conference, and Williams are among the most widely cultivated cultivars in Europe and account for the majority of pear production in Northeastern Spain. To assess the heterogeneity of the community structure in response to environmental variables and tree phenology, bacterial populations were examined using PCR-denaturing gradient gel electrophoresis (DGGE) followed by cluster analysis of the 16S ribosomal DNA profiles by means of the unweighted pair group method with arithmetic means. Similarity analysis of the band patterns failed to identify characteristic fingerprints associated with the pear cultivars. Both environmentally and biologically based principal-component analyses showed that the microbial communities changed significantly throughout the year depending on temperature and, to a lesser extent, on tree phenology and rainfall. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant bacterial populations. Most DGGE band sequences were related to bacterial phyla, such as Bacteroidetes, Cyanobacteria, Acidobacteria, Proteobacteria, Nitrospirae, and Gemmatimonadetes, previously associated with typical agronomic crop environments
Resumo:
One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic scientific interest, the accuracy and completeness of this data set is of considerable importance for human health and medicine. Though progress has been made on computational gene identification in terms of both methods and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated intergenic regions. This test set, which should still present an easier problem than real human genomic sequence, mimics the approximately 200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the accuracy of GENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly, although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as GENEWISE, PROCRUSTES, and BLASTX was not affected significantly by the presence of random intergenic sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this decline. However, the specificities of these techniques are still rather good even when the similarity is weak, which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that though gene prediction will improve with every new protein that is discovered and through improvements in the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of every gene in the human genome using purely computational methodology.
Resumo:
Background: Despite the continuous production of genome sequence for a number of organisms,reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularlytrue for genomes for which there is not a large collection of known gene sequences, such as therecently published chicken genome. We used the chicken sequence to test comparative andhomology-based gene-finding methods followed by experimental validation as an effective genomeannotation method.Results: We performed experimental evaluation by RT-PCR of three different computational genefinders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram wascomputed and each component of it was evaluated. The results showed that de novo comparativemethods can identify up to about 700 chicken genes with no previous evidence of expression, andcan correctly extend about 40% of homology-based predictions at the 5' end.Conclusions: De novo comparative gene prediction followed by experimental verification iseffective at enhancing the annotation of the newly sequenced genomes provided by standardhomology-based methods.
Resumo:
The Zein-2 component named Zc 1 corresponds to a storage protein of an apparent M.W. of 16 kDa present in maize endosperm.
Resumo:
The Zein-2 component named Zc 1 corresponds to a storage protein of an apparent M.W. of 16 kDa present in maize endosperm.
Resumo:
Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.