31 resultados para DIVISION RINGS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The division problem consists of allocating an amount of a perfectly divisible good among a group of n agents with single-peaked preferences. A rule maps preference profiles into n shares of the amount to be allocated. A rule is bribe-proof if no group of agents can compensate another agent to misrepresent his preference and, after an appropriate redistribution of their shares, each obtain a strictly preferred share. We characterize all bribe-proof rules as the class of efficient, strategy-proof, and weak replacement monotonic rules. In addition, we identify the functional form of all bribe-proof and tops-only rules.
Resumo:
The division problem consists of allocating an amount M of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, the uniform rule is the unique strategy-proof, efficient, and anonymous rule. Ching and Serizawa (1998) extended this result by showing that the set of single-plateaued preferences is the largest domain, for all possible values of M, admitting a rule (the extended uniform rule) satisfying strategy-proofness, efficiency and symmetry. We identify, for each M and n, a maximal domain of preferences under which the extended uniform rule also satisfies the properties of strategy-proofness, efficiency, continuity, and "tops-onlyness". These domains (called weakly single-plateaued) are strictly larger than the set of single-plateaued preferences. However, their intersection, when M varies from zero to infinity, coincides with the set of single-plateaued preferences.
Resumo:
In 1749, Jacques de Vaucanson patented his or tour pour tirer la soie or spindle for silk reeling. In that same year he presented his invention to the Academy of the Sciences in Paris, of which he was a member1. Jacques de Vaucanson was born in Grenoble, France, in 1709, and died in Paris in 1782. In 1741 he had been appointed inspector of silk manufactures by Louis XV. He set about reorganizing the silk industry in France, in considerable difficulty at the time due to foreign competition. Given Vaucanson’s position, his invention was intended to replace the traditional Piémontes method, and had an immediate impact upon the silk industry in France and all over Europe.
Resumo:
Recently there has been a great deal of work on noncommutative algebraic cryptography. This involves the use of noncommutative algebraic objects as the platforms for encryption systems. Most of this work, such as the Anshel-Anshel-Goldfeld scheme, the Ko-Lee scheme and the Baumslag-Fine-Xu Modular group scheme use nonabelian groups as the basic algebraic object. Some of these encryption methods have been successful and some have been broken. It has been suggested that at this point further pure group theoretic research, with an eye towards cryptographic applications, is necessary.In the present study we attempt to extend the class of noncommutative algebraic objects to be used in cryptography. In particular we explore several different methods to use a formal power series ring R && x1; :::; xn && in noncommuting variables x1; :::; xn as a base to develop cryptosystems. Although R can be any ring we have in mind formal power series rings over the rationals Q. We use in particular a result of Magnus that a finitely generated free group F has a faithful representation in a quotient of the formal power series ring in noncommuting variables.
Resumo:
The division problem consists of allocating a given amount of an homogeneous and perfectly divisible good among a group of agents with single-peaked preferences on the set of their potential shares. A rule proposes a vector of shares for each division problem. The literature has implicitly assumed that agents will find acceptable any share they are assigned to. In this paper we consider the division problem when agents' participation is voluntary. Each agent has an idiosyncratic interval of acceptable shares where his preferences are single-peaked. A rule has to propose to each agent either to not participate or an acceptable share because otherwise he would opt out and this would require to reassign some of the remaining agents' shares. We study a subclass of efficient and consistent rules and characterize extensions of the uniform rule that deal explicitly with agents' voluntary participation.
Resumo:
In this paper, we characterize the non-emptiness of the equity core (Selten, 1978) and provide a method, easy to implement, for computing the Lorenz-maximal allocations in the equal division core (Dutta-Ray, 1991). Both results are based on a geometrical decomposition of the equity core as a finite union of polyhedrons. Keywords: Cooperative game, equity core, equal division core, Lorenz domination. JEL classification: C71
Resumo:
Important theoretical controversies remain unresolved in the literatire on occupational sex-segregation and the gender wage-gap. A useful way of summarising these controversies is viewing them as a debate between - cultural -socialisation. The paper discusses these theories in detail and carries out a preliminary test of the relative explanatory performance of some of their most consequential predictions. This is done by drawing on the Spanish sample of the second wave of the European Social Survey, ESS. The empirical analysis of ESS data illustrates the notable analytical pay-offs that can stem from using rich individual-level indicators, but also exemplifies the statistical llimitations generated by small sample size and high rates of non-response. Empirical results should, therefore, be taken as preliminary. They seem to suggest that the effect of occupational sex-segregation on wages could be explicable by workers' sex-role attitutes, their relative input in domestic production and the job-specific human capital requirements of their jobs. Of these three factors, job-specialisation seeems clearly the most important one.
Resumo:
We have studied the structure and dipole charge-density response of nanorings as a function of the magnetic field using local-spin-density-functional theory. Two small rings consisting of 12 and 22 electrons confined by a positively charged background are used to represent the cases of narrow and wide rings. The results are qualitatively compared with experimental data existing on microrings and on antidots. A smaller ring containing five electrons is also analyzed to allow for a closer comparison with a recent experiment on a two-electron quantum ring.
Resumo:
We have employed time-dependent local-spin-density theory to analyze the far-infrared transmission spectrum of InAs self-assembled nanoscopic rings recently reported [A. Lorke et al., Phys. Rev. Lett. (to be published)]. The overall agreement between theory and experiment is fairly good, which on the one hand confirms that the experimental peaks indeed reflect the ringlike structure of the sample, and on the other hand, asseses the suitability of the theoretical method to describe such nanostructures. The addition energies of one- and two-electron rings are also reported and compared with the corresponding capacitance spectra
Resumo:
We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring
Resumo:
The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasidegenerate and a rather entangled, strongly-correlated system is formed.
Resumo:
Within local-spin-density functional theory, we have investigated the ¿dissociation¿ of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of interring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble those of a single quantum ring in the few-electron limit. When the rings are quantum mechanically weakly coupled, the electronic states in the molecule are substantially localized in one ring or the other, although the rings can be electrostatically coupled. The effect of a slight mismatch introduced in the molecules from nominally identical quantum wells, or from changes in the inner radius of the constituent rings, induces localization by offsetting the energy levels in the quantum rings. This plays a crucial role in the appearance of the addition spectra as a function of coupling strength particularly in the weak coupling limit.