14 resultados para DIETARY INTAKE
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Resveratrol has been shown to have beneficial effects on diseases related to oxidant and/or inflammatory processes and extends the lifespan of simple organisms including rodents. The objective of the present study was to estimate the dietary intake of resveratrol and piceid (R&P) present in foods, and to identify the principal dietary sources of these compounds in the Spanish adult population. For this purpose, a food composition database (FCDB) of R&P in Spanish foods was compiled. The study included 40 685 subjects aged 3564 years from northern and southern regions of Spain who were included in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Usual food intake was assessed by personal interviews using a computerised version of a validated diet history method. An FCDB with 160 items was compiled. The estimated median and mean of R&P intake were 100 and 933 mg/d respectively. Approximately, 32% of the population did not consume RΠ The most abundant of the four stilbenes studied was trans-piceid (53·6 %), followed by trans-resveratrol (20·9 %), cis-piceid (19·3 %) and cis-resveratrol (6·2 %). The most important source of R&P was wines (98·4 %) and grape and grape juices (1·6 %), whereas peanuts, pistachios and berries contributed to less than 0·01 %. For this reason the pattern of intake of R&P was similar to the wine pattern. This is the first time that R&P intake has been estimated in a Mediterranean country.
Resumo:
Resveratrol has been shown to have beneficial effects on diseases related to oxidant and/or inflammatory processes and extends the lifespan of simple organisms including rodents. The objective of the present study was to estimate the dietary intake of resveratrol and piceid (R&P) present in foods, and to identify the principal dietary sources of these compounds in the Spanish adult population. For this purpose, a food composition database (FCDB) of R&P in Spanish foods was compiled. The study included 40 685 subjects aged 35-64 years from northern and southern regions of Spain who were included in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Usual food intake was assessed by personal interviews using a computerised version of a validated diet history method. An FCDB with 160 items was compiled. The estimated median and mean of R&P intake were 100 and 933 mg/d respectively. Approximately, 32% of the population did not consume RΠ The most abundant of the four stilbenes studied was trans-piceid (53·6 %), followed by trans-resveratrol (20·9 %), cis-piceid (19·3 %) and cis-resveratrol (6·2 %). The most important source of R&P was wines (98·4 %) and grape and grape juices (1·6 %), whereas peanuts, pistachios and berries contributed to less than 0·01 %. For this reason the pattern of intake of R&P was similar to the wine pattern. This is the first time that R&P intake has been estimated in a Mediterranean country.
Resumo:
Introducció: Entre els comportaments alimentaris que poden contribuir a una ingesta dietètica inadequada hi ha el consum d’aliments de conveniència, aliments que es caracteritzen per ser d’elevat contingut calòric, riquesa en greixos saturats i sucres. Les màquines de vending són un dels principals exemples de disponibilitat d’aliments de conveniència. Objectius: Avaluar entre els estudiants de la Universitat de Vic (UVic) els hàbits de consum de productes de les màquines de vending i estudiar les característiques generals dels seus hàbits alimentaris. Materials i mètodes: Enquesta realitzada a 253 estudiants de la UVic durant el curs 07/08. Resultats: Un 72.7% dels enquestats consumeixen productes de les Màquines Expenedores d’Aliments i Begudes (MEAB), fonamentalment com a complement dels àpats i un 63.8% dels enquestats refereix que els agradaria rebre informació nutricional sobre els productes ofertats. Els hàbits alimentaris dels estudiants són bastant adequats ja que un 81.4% realitza almenys 4 àpats diaris. La qualitat de l’esmorzar és bona en el 12.3% dels casos i entre aquells que prenen algun aliment a mig matí la qualitat total de l’esmorzar millora (55.7% bona qualitat). Segons el Kidmed un 39.9% realitzen una dieta mediterrània i s’observen diferències segons la qualitat total de l’esmorzar (p&0.001). Conclusions: El consum de productes de les MEAB en l’entorn universitari és molt important, per la qual cosa la millora del perfil nutricional i la implantació d’estratègies informatives sobre els productes, permetrà que els consumidors estiguin més informats i puguin fer una elecció alimentària més saludable. Els hàbits alimentaris de la població d’estudi reflexen que la qualitat de la dieta dels universitaris és bastant bona, tot i que diferents factors podrien millorar-se. Paraules clau: màquines expenedores d’aliments i begudes (MEAB), hàbits alimentaris, universitaris.
Resumo:
Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine- protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters). This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake. that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.
Resumo:
Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in"other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the"rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat) intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic syndrome
Resumo:
Marked changes in the content of protein in the diet affects the rat"s pattern of growth, but there is not any data on the effects to moderate changes. Here we used a genetically obese rat strain (Zucker) to examine the metabolic modifications induced to moderate changes in the content of protein of diets, doubling (high-protein (HP): 30%) or halving (low-protein (LP): 8%) the content of protein of reference diet (RD: 16%). Nitrogen, energy balances, and amino acid levels were determined in lean (L) and obese (O) animals after 30 days on each diet. Lean HP (LHP) animals showed higher energy efficiency and amino acid catabolism but maintained similar amino acid accrual rates to the lean RD (LRD) group. Conversely, the lean LP (LLP) group showed a lower growth rate, which was compensated by a relative increase in fat mass. Furthermore, these animals showed greater efficiency accruing amino acids. Obesity increased amino acid catabolism as a result of massive amino acid intake; however, obese rats maintained protein accretion rates, which, in the OHP group, implied a normalization of energy efficiency. Nonetheless, the obese OLP group showed the same protein accretion pattern as in lean animals (LLP). In the base of our data, concluded that the Zucker rats accommodate their metabolism to support moderates increases in the content of protein in the diet, but do not adjust in the same way to a 50% decrease in content of protein, as shown by an index of growth reduced, both in lean and obese rats.
Resumo:
Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.
Resumo:
Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.
Resumo:
Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.
Resumo:
Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.
Resumo:
The response of the common carp to diets with varying amounts of digestible starch, provided either as pea meal (LP, HP, 30 and 46% peas, respectively) or as cereal (LW, HW, 30 and 46% wheat, respectively), was studied and compared with the response to a carbohydrate-free protein-rich diet (CF). Here we focused on the utilisation of dietary carbohydrates by examining the relationship between dietary starch intake, hepatic hexokinase activities, circulating insulin and muscle insulin receptor system. Plasma glucose concentration and hepatic high Km hexokinase (glucokinase, GK) activity were not affected by the content of digestible starch, but 6 h after feeding enzyme activity was higher in the fish fed carbohydrate diets. Similarly, low Km hexokinase (HK) activity was also higher in the fish 24 h after feeding. Fat gain and protein retention were significantly improved by increased digestible starch intake, especially in the HP group, which in turn, presented the highest plasma insulin levels. Glycogen stores were moderately increased by the ingestion of digestible starch. The number of insulin receptors was greater in the CF group than in fish on carbohydrates, except the HP group. Our results confirmed that the common carp uses dietary carbohydrates efficiently, especially when there are provided by peas. This efficiency might be related to the enhanced response of postprandial insulin observed in the HP group.