6 resultados para Cytokines -- biosynthesis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.
Resumo:
The natural formation of the bioactive C17-polyacetylenes (−)-(R)-panaxynol and panaxydol was analyzed by 13C-labeling experiments. For this purpose, plants of Panax ginseng were supplied with 13CO2 under field conditions or, alternatively, sterile root cultures of P. ginseng were supplemented with [U-13C6]glucose. The polyynes were isolated from the labeled roots or hairy root cultures, respectively, and analyzed by quantitative NMR spectroscopy. The same mixtures of eight doubly 13C-labeled isotopologues and one single labeled isotopologue were observed in the C17-polyacetylenes obtained from the two experiments. The polyketide-type labeling pattern is in line with the biosynthetic origin of the compounds via decarboxylation of fatty acids, probably of crepenynic acid. The 13C-study now provides experimental evidence for the biosynthesis of panaxynol and related polyacetylenes in P. ginseng under in planta conditions as well as in root cultures. The data also show that 13CO2 experiments under field conditions are useful to elucidate the biosynthetic pathways of metabolites, including those from roots.
Resumo:
Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron–sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron–sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron–sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.
Resumo:
The natural formation of the bioactive C17-polyacetylenes (−)-(R)-panaxynol and panaxydol was analyzed by 13C-labeling experiments. For this purpose, plants of Panax ginseng were supplied with 13CO2 under field conditions or, alternatively, sterile root cultures of P. ginseng were supplemented with [U-13C6]glucose. The polyynes were isolated from the labeled roots or hairy root cultures, respectively, and analyzed by quantitative NMR spectroscopy. The same mixtures of eight doubly 13C-labeled isotopologues and one single labeled isotopologue were observed in the C17-polyacetylenes obtained from the two experiments. The polyketide-type labeling pattern is in line with the biosynthetic origin of the compounds via decarboxylation of fatty acids, probably of crepenynic acid. The 13C-study now provides experimental evidence for the biosynthesis of panaxynol and related polyacetylenes in P. ginseng under in planta conditions as well as in root cultures. The data also show that 13CO2 experiments under field conditions are useful to elucidate the biosynthetic pathways of metabolites, including those from roots.
Resumo:
Background: Few clinical studies have focused on the alcoholindependent cardiovascular effects of the phenolic compounds of red wine (RW). Objective: We aimed to evaluate the effects of ethanol and phenolic compounds of RW on the expression of inflammatory biomarkers related to atherosclerosis in subjects at high risk of cardiovascular disease. Design: Sixty-seven high-risk, male volunteers were included in a randomized, crossover consumption trial. After a washout period, all subjects received RW (30 g alcohol/d), the equivalent amount of dealcoholized red wine (DRW), or gin (30 g alcohol/d) for 4 wk. Before and after each intervention period, 7 cellular and 18 serum inflammatory biomarkers were evaluated. Results: Alcohol increased IL-10 and decreased macrophage-derived chemokine concentrations, whereas the phenolic compounds of RW decreased serum concentrations of intercellular adhesion molecule- 1, E-selectin, and IL-6 and inhibited the expression of lymphocyte function-associated antigen 1 in T lymphocytes and macrophage-1 receptor, Sialil-Lewis X, and C-C chemokine receptor type 2 expression in monocytes. Both ethanol and phenolic compounds of RW downregulated serum concentrations of CD40 antigen, CD40 ligand, IL-16, monocyte chemotactic protein-1, and vascular cell adhesion molecule-1. Conclusion: The results suggest that the phenolic content of RW may modulate leukocyte adhesion molecules, whereas both ethanol and polyphenols of RW may modulate soluble inflammatory mediators in high-risk patients. The trial was registered in the International Standard Randomized Controlled Trial Number Register at http://www. isrctn.org/ as ISRCTN88720134
Resumo:
Background: Few clinical studies have focused on the alcoholindependent cardiovascular effects of the phenolic compounds of red wine (RW). Objective: We aimed to evaluate the effects of ethanol and phenolic compounds of RW on the expression of inflammatory biomarkers related to atherosclerosis in subjects at high risk of cardiovascular disease. Design: Sixty-seven high-risk, male volunteers were included in a randomized, crossover consumption trial. After a washout period, all subjects received RW (30 g alcohol/d), the equivalent amount of dealcoholized red wine (DRW), or gin (30 g alcohol/d) for 4 wk. Before and after each intervention period, 7 cellular and 18 serum inflammatory biomarkers were evaluated. Results: Alcohol increased IL-10 and decreased macrophage-derived chemokine concentrations, whereas the phenolic compounds of RW decreased serum concentrations of intercellular adhesion molecule- 1, E-selectin, and IL-6 and inhibited the expression of lymphocyte function-associated antigen 1 in T lymphocytes and macrophage-1 receptor, Sialil-Lewis X, and C-C chemokine receptor type 2 expression in monocytes. Both ethanol and phenolic compounds of RW downregulated serum concentrations of CD40 antigen, CD40 ligand, IL-16, monocyte chemotactic protein-1, and vascular cell adhesion molecule-1. Conclusion: The results suggest that the phenolic content of RW may modulate leukocyte adhesion molecules, whereas both ethanol and polyphenols of RW may modulate soluble inflammatory mediators in high-risk patients. The trial was registered in the International Standard Randomized Controlled Trial Number Register at http://www. isrctn.org/ as ISRCTN88720134