22 resultados para Cyanobacteria -- Biodegradation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Mass mortality events are increasing dramatically in all coastal marine environments. Determining the underlying causes of mass mortality events has proven difficult in the past because of the lack of prior quantitative data on populations and environmental variables. Four-year surveys of two shallow-water sponge species, Ircinia fasciculata and Sarcotragus spinosulum, were carried out in the western Mediterranean Sea. These surveys provided evidence of two severe sponge die-offs (total mortality ranging from 80 to 95% of specimens) occurring in the summers of 2008 and 2009. These events primarily affected I. fasciculata, which hosts both phototrophic and heterotrophic microsymbionts, while they did not affect S. spinosulum, which harbors only heterotrophic bacteria. We observed a significant positive correlation between the percentage of injured I. fasciculata specimens and exposure time to elevated temperature conditions in all populations, suggesting a key role of temperature in triggering mortality events. A comparative ultrastructural study of injured and healthy I. fasciculata specimens showed that cyanobacteria disappeared from injured specimens, which suggests that cyanobacterial decay could be involved in I. fasciculata mortality. A laboratory experiment confirmed that the cyanobacteria harbored by I. fasciculata displayed a significant reduction in photosynthetic efficiency in the highest temperature treatment. The sponge disease reported here led to a severe decrease in the abundance of the surveyed populations. It represents one of the most dramatic mass mortality events to date in the Mediterranean Sea
Resumo:
A cultivation-independent approach based on polymerase chain reaction (PCR)-amplified partial small subunit rRNA genes was used to characterize bacterial populations in the surface soil of a commercial pear orchard consisting of different pear cultivars during two consecutive growing seasons. Pyrus communis L. cvs Blanquilla, Conference, and Williams are among the most widely cultivated cultivars in Europe and account for the majority of pear production in Northeastern Spain. To assess the heterogeneity of the community structure in response to environmental variables and tree phenology, bacterial populations were examined using PCR-denaturing gradient gel electrophoresis (DGGE) followed by cluster analysis of the 16S ribosomal DNA profiles by means of the unweighted pair group method with arithmetic means. Similarity analysis of the band patterns failed to identify characteristic fingerprints associated with the pear cultivars. Both environmentally and biologically based principal-component analyses showed that the microbial communities changed significantly throughout the year depending on temperature and, to a lesser extent, on tree phenology and rainfall. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant bacterial populations. Most DGGE band sequences were related to bacterial phyla, such as Bacteroidetes, Cyanobacteria, Acidobacteria, Proteobacteria, Nitrospirae, and Gemmatimonadetes, previously associated with typical agronomic crop environments
Resumo:
Fully biodegradable composite materials were obtained through reinforcement of a commercially available thermoplastic starch (TPS) matrix with rapeseed fibers (RSF). The influence of reinforcement content on the water sorption capacity, as well as thermal and thermo-mechanical properties of composites were evaluated. Even though the hydrophilic character of natural fibers tends to favor the absorption of water, results demonstrated that the incorporation of RSF did not have a significant effect on the water uptake of the composites. DSC experiments showed that fibers restricted the mobility of the starch macromolecules from the TPS matrix, hence reducing their capacity to crystallize. The viscoelastic behaviour of TPS was also affected, and reinforced materials presented lower viscous deformation and recovery capacity. In addition, the elasticity of materials was considerably diminished when increasing fiber content, as evidenced in the TMA and DMTA measurements
Resumo:
Palaeobotany applied to freshwater plants is an emerging field of palaeontology. Hydrophytic plants reveal evolutionary trends of their own, clearly distinct from those of the terrestrial and marine flora. During the Precambrian, two groups stand out in the fossil record of freshwater plants: the Cyanobacteria (stromatolites) in benthic environments and the prasinophytes (leiosphaeridian acritarchs) in transitional planktonic environments. During the Palaeozoic, green algae (Chlorococcales, Zygnematales, charophytes and some extinct groups) radiated and developed the widest range of morphostructural patterns known for these groups. Between the Permian and Early Cretaceous, charophytes dominated macrophytic associations, with the consequence that over tens of millions of years, freshwater flora bypassed the dominance of vascular plants on land. During the Early Cretaceous, global extension of the freshwater environments is associated with diversification of the flora, including new charophyte families and the appearance of aquatic angiosperms and ferns for the first time. Mesozoic planktonic assemblages retained their ancestral composition that was dominated by coenobial Chlorococcales, until the appearance of freshwater dinoflagellates in the Early Cretaceous. In the Late Cretaceous, freshwater angiosperms dominated almost all macrophytic communities worldwide. The Tertiary was characterised by the diversification of additional angiosperm and aquatic fern lineages, which resulted in the first differentiation of aquatic plant biogeoprovinces. Phytoplankton also diversified during the Eocene with the development of freshwater diatoms and chrysophytes. Diatoms, which were exclusively marine during tens of millions of years, were dominant over the Chlorococcales during Neogene and in later assemblages. During the Quaternary, aquatic plant communities suffered from the effects of eutrophication, paludification and acidification, which were the result of the combined impact of glaciation and anthropogenic disturbance.
Resumo:
The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna. All surfactants yielded EC50 values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO2 headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as"readily biodegradable compounds".
Resumo:
The decomposition process of Ruppia cirrhosa was studied in a Mediterranean coastal lagoon in the Delta of the River Ebro (NE Spain). Leaves and shoots of Ruppia were enclosed in 1 mm-mesh and 100 pm-mesh litter bags to ascertain the effect of detritivores, macroinvertebrates, and bacteria and fungi, respectively. Changes in biomass and carbon, and, nitrogen and phosphorus concentrations in the detritus were studied at the sediment-water interface and in the sediment. Significant differences in biomass decay were observed between the two bag types. Significant differences in decomposition were observed between the two experimental conditions studied using 100 pm-mesh bags. These differences were not significant when using the 1 mm-mesh bags. The carbon content in the detritus remained constant during the decomposition process. The percentage of nitrogen increased progressively from an initial 2.4 % to 3 %. The percentage of phosphorus decreased rapidly during the first two days of decomposition from an initial 0.26 % to 0.17 %. This loss is greater in the sediment than in the water column or at the sediment-water interface. From these results we deduce that the activity of microorganisms seems to be more important in the sediment than in the water-sediment interface, and that grazing by macroinvertebrates has less importance in the sediment than in the water column.
Resumo:
Atmophytic Cyanophyta and Algae from limestone substrata. The walls of caves and tombs support an abundant colonization of light-dependent organisms. A total of 4 liverworts, 3 mosses, 7 lichens and 28 cyanophyta and algae are reported from 3 collecting sites. The development and specific composition of these organisms is related to microclimatic parameters. Opportunistic species present in soils are found on the mouth of hypogeal niches. Light attenuation allows the development of calcifying cyanophyta following a succesional pattern, each level having a different dominant species. Communities dominated by Scytonema julianum are replaced by Herpyzonema pulverulentum and, towards the less iluminated area, by Geitleria calcarea and Loriella sp. Key words: Caves, Light attenuation, Non vascular plants, Colonization, Calcifying cyanophyta, Scytonema julianum, Herpyzonema pulverulentum, Geitleria calcarea, Chlorophyta, Diatoms, Microclimatic gradient.
Resumo:
The decomposition process of Ruppia cirrhosa was studied in a Mediterranean coastal lagoon in the Delta of the River Ebro (NE Spain). Leaves and shoots of Ruppia were enclosed in 1 mm-mesh and 100 pm-mesh litter bags to ascertain the effect of detritivores, macroinvertebrates, and bacteria and fungi, respectively. Changes in biomass and carbon, and, nitrogen and phosphorus concentrations in the detritus were studied at the sediment-water interface and in the sediment. Significant differences in biomass decay were observed between the two bag types. Significant differences in decomposition were observed between the two experimental conditions studied using 100 pm-mesh bags. These differences were not significant when using the 1 mm-mesh bags. The carbon content in the detritus remained constant during the decomposition process. The percentage of nitrogen increased progressively from an initial 2.4 % to 3 %. The percentage of phosphorus decreased rapidly during the first two days of decomposition from an initial 0.26 % to 0.17 %. This loss is greater in the sediment than in the water column or at the sediment-water interface. From these results we deduce that the activity of microorganisms seems to be more important in the sediment than in the water-sediment interface, and that grazing by macroinvertebrates has less importance in the sediment than in the water column.
Resumo:
The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna. All surfactants yielded EC50 values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO2 headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as"readily biodegradable compounds".
Resumo:
The structural organization of microbial mats from the Ebro Delta (Spain) and their accretion and partial lithification processes were explored using scanning electron microscopy in back-scattered electron mode and low-temperature scanning electron microscopy. Two differentiated zones were distinguished in a transverse section of a fragment taken from the mat at a depth of 2.5 mm. The first consisted of an upper layer in which the dominant microorganisms, Microcoleus spp., actively grew in an embedded slack matrix of exopolysaccharides. Microcoleus filaments were oriented parallel to the surface and to each other, with filaments below arranged perpendicularly to one another but without crossing. Most of the minerals present were allochthonous grains of calcium phosphate biocorroded by cyanobacteria. The second zone was below a depth of 1 mm and made up of accretion layers with large deposits of calcium carbonate and smaller amounts of calcium phosphate of biological origin. The predominance of a particular type of mineral precipitation with a characteristic external shape and/or texture within a zone, e.g., sponge-like deposits of calcium phosphate, appears to depend on the taxa of the prevailing microorganisms
Resumo:
Biofilters degrade only a small fraction of the natural organic matter (NOM) contained in seawater which is the leading cause of biofouling in downstream processes. This work studies the effects of chemical additions on NOM biodegradation by biofilters. In this work, biofiltration of seawater with an empty bed contact time (EBCT) of 6 min and a hydraulic loading rate of 10 m h-1 reduces the biological oxygen demand (BOD7) by 8%, the dissolved organic carbon (DOC) by 6% and the UV absorbance at 254 nm (A254) by 7%. Different amounts of ammonium chloride are added to the seawater (up to twice the total dissolved nitrogen in untreated seawater) to study its possible effect on the removal of NOM by a pilot-scale biofilter. Seawater is amended with different amounts of easily biodegradable dissolved organic carbon (BDOC) supplied as sodium acetate (up to twice the DOC) for the same purpose. The results of this work reveal that the ammonium chloride additions do not significantly affect NOM removal and the sodium acetate is completely consumed by the biofiltration process. For both types of chemical additions, the BOD7, DOC and A254 in the outlet stream of the biofilter are similar to the values for the untreated control. These results indicate that this biofilter easily removes the BDOC from the seawater when the EBCT is not above 6 min. Furthermore, nitrogen does not limit the NOM biodegradation in seawater under these experimental conditions.
Resumo:
In the present study, we examined seawater biofiltration in terms of adenosine triphosphate (ATP) and turbidity. A pilot biofilter continuously fed with fresh seawater reduced both turbidity and biological activity measured by ATP. Experiments operated with an empty bed contact time (EBCT) of between 2 and 14 min resulted in cellular ATP removals of 32% to 60% and turbidity removals of 38% to 75%. Analysis of the water from backwashing the biofilter revealed that the first half of the biofilter concentrated around 80% of the active biomass and colloidal material that produces turbidity. By reducing the EBCT, the biological activity moved from the first part of the biofilter to the end. Balances of cellular ATP and turbidity between consecutive backwashings indicated that the biological activity generated in the biofilter represented more than 90% of the detached cellular ATP. In contrast, the trapped ATP was less than 10% of the overall cellular ATP detached during the backwashing process. Furthermore, the biological activity generated in the biofilter seemed to be more dependent on the elapsed time than the volume filtered. In contrast, the turbidity trapped in the biofilter was proportional to the volume filtered, although a slightly higher amount of turbidity was found in the backwashing water; this was probably due to attrition of the bed medium. Finally, no correlations were found between turbidity and ATP, indicating that the two parameters focus on different matter. This suggests that turbidity should not be used as an alternative to cellular concentration.
Resumo:
1. The implementation of the Water Framework Directive requires EU member states to establish and harmonize ecological status class boundaries for biological quality elements. In this paper, we describe an approach for defining ecological class boundaries that delineates shifts in lake ecosystem functioning and, therefore, provides ecologically meaningful targets for water policy in Europe. 2. We collected an extensive data set of 810 lake-years from nine Central European countries, and we used phytoplankton chlorophyll a, a metric widely used to measure the impact of eutrophication in lakes. Our approach establishes chlorophyll a target values in relation to three significant ecological effects of eutrophication: the decline of aquatic macrophytes, the dominance of potentially harmful cyanobacteria and the major functional switch from a clear water to a turbid state. 3. Ranges of threshold chlorophyll a concentrations are given for the two most common lake types in lowland Central Europe: for moderately deep lakes (mean depth 3–15 m), the greatest ecological shifts occur in the range 10–12 lg L 1 chlorophyll a, and for shallow lakes (<3 m mean depth), in the range 21–23 lg L 1 chlorophyll a. 4. Synthesis and applications. Our study provides class boundaries for determining the ecological status of lakes, which have robust ecological consequences for lake functioning and which, therefore, provide strong and objective targets for sustainable water management in Europe. The results have been endorsed by all participant member states and adopted in the European Commission legislation, marking the first attempt in international water policy to move from physico-chemical quality standards to harmonized ecologically based quality targets.
Resumo:
We investigated the decayed historical church window glasses of two Catalonian churches, both under Mediterranean climate. Glass surfaces were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). Their chemical composition was determined by avelength-dispersive spectrometry (WDS) microprobe analysis. The biodiversity was investigated by molecular methods: DNA extraction from glass, amplification by PCR targeting the16S rRNA and ITS regions, and fingerprint analyses by denaturing gradient gel electrophoresis (DGGE). Clone libraries containing either PCR fragments of the bacterial 16S rDNA or the fungal ITS regions were screened by DGGE. Clone inserts were sequenced and compared with the EMBL database.