11 resultados para Crop rotations
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
El objetivo de la presente investigación fue analizar la correspondencia entre los resultados de una evaluación de tierras con la distribución real de los cultivos. Para ello la aptitud biofísica de las tierras se comparó con diferentes tipologías de frecuencia de ocurrencia de los cultivos y rotaciones derivadas de mapas de cultivos multitemporales. La investigación fue llevada a cabo en el distrito de riego de Flumen (33.000 ha), localizado en el valle del Ebro (NE España). La evaluación de tierras se basó en una cartografía de suelos 1:100.000, según el esquema FAO, para los principales cultivos presentes en el área de estudio (alfalfa, cereales de invierno, maíz, arroz y girasol). Se utilizaron tres mapas de frecuencia de cultivos y un mapa de rotaciones, derivado de una serie temporal de imágenes Landsat TM y ETM+ del periodo 1993-2000, y se compararon con los mapas de aptitud de tierras para los diferentes cultivos. Se analizó estadísticamente (Pearson χ2, Cramer V, Gamma y Somers D) la relación entre los dos tipos de variables. Los resultados muestran la existencia de una relación significativa (P=0,001) entre la localización de los cultivos y la idoneidad de las tierras, excepto de cultivos oportunistas como el girasol, muy influenciado por las subvenciones en el periodo estudiado. Las rotaciones basadas en la alfalfa muestran los mayores porcentajes (52%) de ocupación en las tierras más aptas para la agricultura en el área de estudio. El presente enfoque multitemporal de análisis de la información ofrece una visión más real que la comparación entre un mapa de evaluación de tierras y un mapa de cultivos de una fecha determinada, cuando se valora el grado de acuerdo entre las recomendaciones sobre la aptitud de las tierras y los cultivos realmente cultivados por los agricultores.
Resumo:
The environmental impact of the water consumption of four typical crop rotations grown in Spain, including energy crops, was analyzed and compared against Spanish agricultural and natural reference situations. The life cycle assessment (LCA) methodology was used for the assessment of the potential environmental impact of blue water (withdrawal from water bodies) and green water (uptake of soil moisture) consumption. The latter has so far been disregarded in LCA. To account for green water, two approaches have been applied: the first accounts for the difference in green water demand of the crops and a reference situation. The second is a green water scarcity index, which measures the fraction of the soil-water plant consumption to the available green water. Our results show that, if the aim is to minimize the environmental impacts of water consumption, the energy crop rotations assessed in this study were most suitable in basins in the northeast of Spain. In contrast, the energy crops grown in basins in the southeast of Spain were associated with the greatest environmental impacts. Further research into the integration of quantitative green water assessment in LCA is crucial in studies of systems with a high dependence on green water resources.
Resumo:
In crop rotations that include alfalfa (Medicago sativa L.), agronomic and environmental concerns mean that it is important to determine the N fertilizer contribution of this legume for subsequent crops in order to help to increase the sustainability of cropping systems. To determine the N fertilizer replacement value (FRV) of a 2-yr alfalfa crop on subsequent crops of corn (Zea mays L.) followed by wheat (Triticum aestivum L.) under irrigated Mediterranean conditions, two 4-yr rotations (alfalfa-corn-wheat and corn-corn-corn-wheat) were conducted from 2001 to 2004 in a Typic Xerofluvent soil. Corn yields were compared after two years of alfalfa and a third year of corn under monoculture and wheat yields were also compared after both rotations. Corn production after alfalfa outyielded monoculture corn at all four rates of N fertilizer application analyzed (0, 100, 200 and 300 kg N/ha). The FRV of 2-yr alfalfa for corn was about 160 kg N/ha. Wheat grown after the alfalfa-corn rotation outyielded that grown after corn under monoculture at both the rates of N studied (0 and 100 kg N/ha). The FRV of alfalfa for wheat following alfalfa-corn was about 76 kg N/ha. Soil NO3 -N content after alfalfa was greater than with the corn monoculture at all rates of N fertilizer application and this higher value persisted during the second crop after alfalfa. This was probably one of the reasons for the better yields associated with the alfalfa rotation. These results make a valuable contribution to irrigated agriculture under mediterranean conditions, show reasons for interest in rotating alfalfa with corn, and explain how it is possible to make savings when applying N fertilizer.
Resumo:
Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.
Resumo:
The effects of both barley and Lolium rigidum densities on weed growth and spike production and on crop yield were examined in five field experiments carried out in the Mediterranean drylands of Spain and Western Australia. The aim was to check the consistency of the competitiveness of the crop in different environmental and management conditions. L. rigidum reduced barley yields in most of the experiments (between 0 and 85%), the number of ears per m2 being the most affected. It was found that increasing the barley seeding rate did not reduce the crop losses but did limit weed biomass (between 5 and 61%) and spike production (between 24 and 85%). The variability observed in crop yield losses between sites and seasons was related to rainfall at the beginning of the season. The most sensitive component of yield to weed competition was the number of ears per plant.
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
En este trabajo se investiga la coherencia y confiabilidad de estimaciones de funciones de densidad de probabilidad (FDP) subjetivas de rendimientos de cultivos realizadas por un amplio grupo de agricultores. Se utilizaron tres técnicas de elicitación diferentes: el método de estimación de FDP en dos pasos, la distribución Triangular y la distribución Beta. Los sujetos entrevistados ofrecieron estimaciones para los valores puntuales de rendimientos de cultivos (medio, máximo posible, más frecuente y mínimo posible) y para las FDP basadas en la estimación de intervalos. Para evaluar la persistencia, se utilizaron los conceptos de persistencia temporal y persistencia metodológica. Los resultados son interesantes para juzgar la adecuación de las técnicas de estimación de probabilidades subjetivas a los sistemas de ayuda en la toma de decisiones en agricultura.
Resumo:
En este trabajo se investiga la persistencia de las estimaciones puntuales subjetivas de rendimientos en cultivos anua- les realizadas por un amplio grupo de agricultores. La persistencia en el tiempo es una condición necesaria para la co- herencia y la confiabilidad de las estimaciones subjetivas de variables aleatorias. Los sujetos entrevistados estimaron valores puntuales de rendimientos de cultivos anuales (rendimientos medio, mayor, mínimo y más frecuente). Se han encontrado diferencias relativas poco importantes en todas las variables, excepto en los rendimientos mínimos, donde existe una alta dispersión. Los resultados son interesantes para estimar la adecuación de las técnicas de estimación de probabilidades subjetivas para ser utilizadas en los sistemas de ayuda en la toma de decisiones en agricultura.
Resumo:
Les plantes transgèniques són una part integral de l’agricultura contemporània. Durant l’any 2006 més de noranta milions d’hectàrees de plantes transgèniques van ser cultivades en vint-i-un països. Des de la comercialització de la primera planta transgènica el 1996 els nivells d’adopció d’aquests cultius han augmentat anualment amb percentatges de dos dígits. El desenvolupament i la comercialització de les plantes transgèniques van lligats estretament al comerç mundial, a la globalització, a la disponibilitat de suficient menjar, a la protecció del medi ambient i del consumidor i a la propietat intel·lectual. En aquest article exposem els avenços més recents i les tendències actuals en el desenvolupament dels cultius transgènics i de la seva utilització. També ens fem ressò d’alguns assumptes no científics que s’han de solucionar abans que aquests cultius arribin al màxim del seu potencial, proporcionant una agricultura més sostenible i ecològica. Finalment, ressaltarem la importància de com les plantes transgèniques poden contribuir en la disponibilitat de menjar i en la millora de la pobresa en els països en vies de desenvolupament.
Resumo:
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.