24 resultados para Criticality calculations
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Quantitatively assessing the importance or criticality of each link in a network is of practical value to operators, as that can help them to increase the network's resilience, provide more efficient services, or improve some other aspect of the service. Betweenness is a graph-theoretical measure of centrality that can be applied to communication networks to evaluate link importance. However, as we illustrate in this paper, the basic definition of betweenness centrality produces inaccurate estimations as it does not take into account some aspects relevant to networking, such as the heterogeneity in link capacity or the difference between node-pairs in their contribution to the total traffic. A new algorithm for discovering link centrality in transport networks is proposed in this paper. It requires only static or semi-static network and topology attributes, and yet produces estimations of good accuracy, as verified through extensive simulations. Its potential value is demonstrated by an example application. In the example, the simple shortest-path routing algorithm is improved in such a way that it outperforms other more advanced algorithms in terms of blocking ratio
Resumo:
This paper focuses on one of the methods for bandwidth allocation in an ATM network: the convolution approach. The convolution approach permits an accurate study of the system load in statistical terms by accumulated calculations, since probabilistic results of the bandwidth allocation can be obtained. Nevertheless, the convolution approach has a high cost in terms of calculation and storage requirements. This aspect makes real-time calculations difficult, so many authors do not consider this approach. With the aim of reducing the cost we propose to use the multinomial distribution function: the enhanced convolution approach (ECA). This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements and makes a simple deconvolution process possible. The ECA is used in connection acceptance control, and some results are presented
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
Systematic trends in the properties of a linear split-gate heterojunction are studied by solving iteratively the Poisson and Schrödinger equations for different gate potentials and temperatures. A two-dimensional approximation is presented that is much simpler in the numerical implementation and that accurately reproduces all significant trends. In deriving this approximation, we provide a rigorous and quantitative basis for the formulation of models that assumes a two-dimensional character for the electron gas at the junction.
Resumo:
We have studied the structure and dipole charge-density response of nanorings as a function of the magnetic field using local-spin-density-functional theory. Two small rings consisting of 12 and 22 electrons confined by a positively charged background are used to represent the cases of narrow and wide rings. The results are qualitatively compared with experimental data existing on microrings and on antidots. A smaller ring containing five electrons is also analyzed to allow for a closer comparison with a recent experiment on a two-electron quantum ring.
Resumo:
We investigate adsorption of helium in nanoscopic polygonal pores at zero temperature using a finite-range density functional theory. The adsorption potential is computed by means of a technique denoted as the elementary source method. We analyze a rhombic pore with Cs walls, where we show the existence of multiple interfacial configurations at some linear densities, which correspond to metastable states. Shape transitions and hysterectic loops appear in patterns which are richer and more complex than in a cylindrical tube with the same transverse area.
Resumo:
Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.
Resumo:
We calculate the chemical potential ¿0 and the effective mass m*/m3 of one 3He impurity in liquid 4He. First a variational wave function including two- and three-particle dynamical correlations is adopted. Triplet correlations bring the computed values of ¿0 very close to the experimental results. The variational estimate of m*/m3 includes also backflow correlations between the 3He atom and the particles in the medium. Different approximations for the three-particle distribution function give almost the same values for m*/m3. The variational approach underestimates m*/m3 by ~10% at all of the considered densities. Correlated-basis perturbation theory is then used to improve the wave function to include backflow around the particles of the medium. The perturbative series built up with one-phonon states only is summed up to infinite order and gives results very close to the variational ones. All the perturbative diagrams with two independent phonons have then been summed to compute m*/m3. Their contribution depends to some extent on the form used for the three-particle distribution function. When the scaling approximation is adopted, a reasonable agreement with the experimental results is achieved.
Resumo:
The magnetic structure of the edge-sharing cuprate compound Li2CuO2 has been investigated with highly correlated ab initio electronic structure calculations. The first- and second-neighbor in-chain magnetic interactions are calculated to be 142 and -22 K, respectively. The ratio between the two parameters is smaller than suggested previously in the literature. The interchain interactions are antiferromagnetic in nature and of the order of a few K only. Monte Carlo simulations using the ab initio parameters to define the spin model Hamiltonian result in a Nel temperature in good agreement with experiment. Spin population analysis situates the magnetic moment on the copper and oxygen ions between the completely localized picture derived from experiment and the more delocalized picture based on local-density calculations.
Resumo:
We have studied the collective behavior of a population of integrate-and-fire oscillators. We show that diversity, introduced in terms of a random distribution of natural periods, is the mechanism that permits one to observe self-organized criticality (SOC) in the long time regime. As diversity increases the system undergoes several transitions from a supercritical regime to a subcritical one, crossing the SOC region. Although there are resemblances with percolation, we give proofs that criticality takes place for a wide range of values of the control parameter instead of a single value.
Resumo:
We introduce two coupled map lattice models with nonconservative interactions and a continuous nonlinear driving. Depending on both the degree of conservation and the convexity of the driving we find different behaviors, ranging from self-organized criticality, in the sense that the distribution of events (avalanches) obeys a power law, to a macroscopic synchronization of the population of oscillators, with avalanches of the size of the system.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.