12 resultados para Critical clearing time
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Critical real-time ebedded (CRTE) Systems require safe and tight worst-case execution time (WCET) estimations to provide required safety levels and keep costs low. However, CRTE Systems require increasing performance to satisfy performance needs of existing and new features. Such performance can be only achieved by means of more agressive hardware architectures, which are much harder to analyze from a WCET perspective. The main features considered include cache memòries and multi-core processors.Thus, althoug such features provide higher performance, corrent WCET analysis methods are unable to provide tight WCET estimations. In fact, WCET estimations become worse than for simple rand less powerful hardware. The main reason is the fact that hardware behavior is deterministic but unknown and, therefore, the worst-case behavior must be assumed most of the time, leading to large WCET estimations. The purpose of this project is developing new hardware designs together with WCET analysis tools able to provide tight and safe WCET estimations. In order to do so, those pieces of hardware whose behavior is not easily analyzable due to lack of accurate information during WCET analysis will be enhanced to produce a probabilistically analyzable behavior. Thus, even if the worst-case behavior cannot be removed, its probabilty can be bounded, and hence, a safe and tight WCET can be provided for a particular safety level in line with the safety levels of the remaining components of the system. During the first year the project we have developed molt of the evaluation infraestructure as well as the techniques hardware techniques to analyze cache memories. During the second year those techniques have been evaluated, and new purely-softwar techniques have been developed.
Resumo:
We analyze the two-dimensional parabolic-elliptic Patlak-Keller-Segel model in the whole Euclidean space R2. Under the hypotheses of integrable initial data with finite second moment and entropy, we first show local in time existence for any mass of "free-energy solutions", namely weak solutions with some free energy estimates. We also prove that the solution exists as long as the entropy is controlled from above. The main result of the paper is to show the global existence of free-energy solutions with initial data as before for the critical mass 8 Π/Χ. Actually, we prove that solutions blow-up as a delta dirac at the center of mass when t→∞ keeping constant their second moment at any time. Furthermore, all moments larger than 2 blow-up as t→∞ if initially bounded.
Resumo:
We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are present. The presence of this fast exponential process and its associated critical time is in agreement with some recent experimental results on fragile glasses.
Resumo:
Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
We study the damage enhanced creep rupture of disordered materials by means of a fiber bundle model. Broken fibers undergo a slow stress relaxation modeled by a Maxwell element whose stress exponent m can vary in a broad range. Under global load sharing we show that due to the strength disorder of fibers, the lifetime ʧ of the bundle has sample-to-sample fluctuations characterized by a log-normal distribution independent of the type of disorder. We determine the Monkman-Grant relation of the model and establish a relation between the rupture life tʄ and the characteristic time tm of the intermediate creep regime of the bundle where the minimum strain rate is reached, making possible reliable estimates of ʧ from short term measurements. Approaching macroscopic failure, the deformation rate has a finite time power law singularity whose exponent is a decreasing function of m. On the microlevel the distribution of waiting times is found to have a power law behavior with m-dependent exponents different below and above the critical load of the bundle. Approaching the critical load from above, the cutoff value of the distributions has a power law divergence whose exponent coincides with the stress exponent of Maxwell elements
Resumo:
We present a continuous time random walk model for the scale-invariant transport found in a self-organized critical rice pile [K. Christensen et al., Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that the dynamics of the experiment can be explained in terms of Lvy flights for the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular automaton model.
Resumo:
We calculate noninteger moments ¿tq¿ of first passage time to trapping, at both ends of an interval (0,L), for some diffusion and dichotomous processes. We find the critical behavior of ¿tq¿, as a function of q, for free processes. We also show that the addition of a potential can destroy criticality.
Resumo:
By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.
Resumo:
We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule satisfies detailed balance for d=1 but not for d>1. We find numerically nonequilibrium critical points of the Ising class for d=2 and 3.
Resumo:
By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.
Resumo:
Analysis of stratigraphic terminology and classification, shows that time-related stratigraphic units, which by definition have a global extent, are the concern of international cornrnissions and committees of the intemational Union of Geological Sciences (IUGS) . In contrast, lithostratigraphic, and other closely related units, are regional in extent and are catalogued in the International Stratigraphic Lexicon (ISL), the last volume of which, was published in 1987. Tlie intemational Commission on Stratigraphy (ICS) is currently attempting to revitalize the publication of ISL, given that the information contained in published volumes has never been updated, and that there has been a significant increase in stratigraphic research in recent decades. The proliferation of named units in the South Pyrenean and Ebro Basin Paleogene is evaluated to illustrate the extent of the problem. Moreover, new approaches to stratigraphic analysis have led to the naming of genetic units according to similar guidelines followed in the naming of descnptive or lithostratigraphic units. This has led to considerable confusion. The proposal to revitalize the ISL is accepted as part of the solution, that should also include the publication of critica1 catalogues, and the creation of norms for genetic unit terminology.