34 resultados para Cr-doped sonogel
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Report for the scientific sojourn at the the Philipps-Universität Marburg, Germany, from september to december 2007. For the first, we employed the Energy-Decomposition Analysis (EDA) to investigate aromaticity on Fischer carbenes as it is related through all the reaction mechanisms studied in my PhD thesis. This powerful tool, compared with other well-known aromaticity indices in the literature like NICS, is useful not only for quantitative results but also to measure the degree of conjugation or hyperconjugation in molecules. Our results showed for the annelated benzenoid systems studied here, that electron density is more concentrated on the outer rings than in the central one. The strain-induced bond localization plays a major role as a driven force to keep the more substituted ring as the less aromatic. The discussion presented in this work was contrasted at different levels of theory to calibrate the method and ensure the consistency of our results. We think these conclusions can also be extended to arene chemistry for explaining aromaticity and regioselectivity reactions found in those systems.In the second work, we have employed the Turbomole program package and density-functionals of the best performance in the state of art, to explore reaction mechanisms in the noble gas chemistry. Particularly, we were interested in compounds of the form H--Ng--Ng--F (where Ng (Noble Gas) = Ar, Kr and Xe) and we investigated the relative stability of these species. Our quantum chemical calculations predict that the dixenon compound HXeXeF has an activation barrier for decomposition of 11 kcal/mol which should be large enough to identify the molecule in a low-temperature matrix. The other noble gases present lower activation barriers and therefore are more labile and difficult to be observable systems experimentally.
Resumo:
Kuranishi's fundamental result (1962) associates to any compact complex manifold X&sub&0&/sub& a finite-dimensional analytic space which has to be thought of as a local moduli space of complex structures close to X&sub&0&/sub&. In this paper, we give an analogous statement for Levi-flat CR manifolds fibering properly over the circle by describing explicitely an infinite-dimensional Kuranishi type local moduli space of Levi-flat CR structures. We interpret this result in terms of Kodaira-Spencer deformation theory making clear the likenesses as well as the differences with the classical case. The article ends with applications and examples.
Resumo:
Polarized and G-polarized CR manifolds are smooth manifolds endowed with a double structure: a real foliation &em&F&/em& (given by the action of a Lie group G in the G-polarized case) and a transverse CR distribution. Polarized means that (E,J) is roughly speaking invariant by&em&F&/em&. Both structures are therefore linked up. The interplay between them gives to polarized CR-manifolds a very rich geometry. In this paper, we study the properties of polarized and G-polarized manifolds, putting special emphasis on their deformations.
Resumo:
Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.
Resumo:
High quantum efficiency erbium doped silicon nanocluster (Si-NC:Er) light emitting diodes (LEDs) were grown by low-pressure chemical vapor deposition (LPCVD) in a complementary metal-oxide-semiconductor (CMOS) line. Erbium (Er) excitation mechanisms under direct current (DC) and bipolar pulsed electrical injection were studied in a broad range of excitation voltages and frequencies. Under DC excitation, Fowler-Nordheim tunneling of electrons is mediated by Er-related trap states and electroluminescence originates from impact excitation of Er ions. When the bipolar pulsed electrical injection is used, the electron transport and Er excitation mechanism change. Sequential injection of electrons and holes into silicon nanoclusters takes place and nonradiative energy transfer to Er ions is observed. This mechanism occurs in a range of lower driving voltages than those observed in DC and injection frequencies higher than the Er emission rate.
Resumo:
Arrays of vertically aligned ZnO:Cl/ZnO core-shell nanowires were used to demonstrate that the control of the coaxial doping profile in homojunction nanostructures can improve their surface charge carrier transfer while conserving potentially excellent transport properties. It is experimentally shown that the presence of a ZnO shell enhances the photoelectrochemical properties of ZnO:Cl nanowires up to a factor 5. Likewise, the ZnO shell promotes the visible photoluminescence band in highly conducting ZnO:Cl nanowires. These lines of evidence are associated with the increase of the nanowires" surface depletion layer
Resumo:
In the framework of a finite-range density-functional theory, we compute the response of 4HeN clusters doped with a rare-gas molecule. For this purpose, the mean field for the 4He atoms, their wave functions and effective quasiparticle interaction, are self-consistently calculated for a variety of particle numbers in the cluster. The response function is then evaluated for several multipolarities in each drop and the collective states are consequently located from the peaks of the strength function. The spectra of pure droplets approach those previously extracted with a similar algorithm resorting to a zero-range density functional. The spectra of doped clusters are sensitive to the presence of the impurity and are worth a future systematic investigation.
Resumo:
We have investigated the fragmentation of collective modes in doped 4He drops in the framework of a finite-range density-functional theory, as well as the delocalization of the impurity inside the cluster. Our results indicate that the impurity is gradually delocalized inside the drop as the size of the latter increases. As an example, results are shown in the case of Xe-4HeN systems up to N=112.
Resumo:
We present structural and electrical properties for p- and n-type layers grown close to the transition between a-Si:H and nc-Si:H onto different substrates: Corning 1737 glass, ZnO:Al-coated glass and stainless steel. Structural properties were observed to depend on the substrate properties for samples grown under the same deposition conditions. Different behaviour was observed for n- and p-type material. Stainless steel seemed to enhance crystallinity when dealing with n-type layers, whereas an increased crystalline fraction was obtained on glass for p-type samples. Electrical conduction in the direction perpendicular to the substrate seemed to be mainly determined by the interfaces or by the existence of an amorphous incubation layer that might determine the electrical behaviour. In the direction perpendicular to the substrate, n-type layers exhibited a lower resistance value than p-type ones, showing better contact properties between the layer and the substrate.