109 resultados para Covariance matrix decomposition

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes whether standard covariance matrix tests work whendimensionality is large, and in particular larger than sample size. Inthe latter case, the singularity of the sample covariance matrix makeslikelihood ratio tests degenerate, but other tests based on quadraticforms of sample covariance matrix eigenvalues remain well-defined. Westudy the consistency property and limiting distribution of these testsas dimensionality and sample size go to infinity together, with theirratio converging to a finite non-zero limit. We find that the existingtest for sphericity is robust against high dimensionality, but not thetest for equality of the covariance matrix to a given matrix. For thelatter test, we develop a new correction to the existing test statisticthat makes it robust against high dimensionality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central message of this paper is that nobody should be using the samplecovariance matrix for the purpose of portfolio optimization. It containsestimation error of the kind most likely to perturb a mean-varianceoptimizer. In its place, we suggest using the matrix obtained from thesample covariance matrix through a transformation called shrinkage. Thistends to pull the most extreme coefficients towards more central values,thereby systematically reducing estimation error where it matters most.Statistically, the challenge is to know the optimal shrinkage intensity,and we give the formula for that. Without changing any other step in theportfolio optimization process, we show on actual stock market data thatshrinkage reduces tracking error relative to a benchmark index, andsubstantially increases the realized information ratio of the activeportfolio manager.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes to estimate the covariance matrix of stock returnsby an optimally weighted average of two existing estimators: the samplecovariance matrix and single-index covariance matrix. This method isgenerally known as shrinkage, and it is standard in decision theory andin empirical Bayesian statistics. Our shrinkage estimator can be seenas a way to account for extra-market covariance without having to specifyan arbitrary multi-factor structure. For NYSE and AMEX stock returns from1972 to 1995, it can be used to select portfolios with significantly lowerout-of-sample variance than a set of existing estimators, includingmulti-factor models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este artículo, a partir de la inversa de la matriz de varianzas y covarianzas se obtiene el modelo Esperanza-Varianza de Markowitz siguiendo un camino más corto y matemáticamente riguroso. También se obtiene la ecuación de equilibrio del CAPM de Sharpe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este artículo, a partir de la inversa de la matriz de varianzas y covarianzas se obtiene el modelo Esperanza-Varianza de Markowitz siguiendo un camino más corto y matemáticamente riguroso. También se obtiene la ecuación de equilibrio del CAPM de Sharpe.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we analyse, using Monte Carlo simulation, the possible consequences of incorrect assumptions on the true structure of the random effects covariance matrix and the true correlation pattern of residuals, over the performance of an estimation method for nonlinear mixed models. The procedure under study is the well known linearization method due to Lindstrom and Bates (1990), implemented in the nlme library of S-Plus and R. Its performance is studied in terms of bias, mean square error (MSE), and true coverage of the associated asymptotic confidence intervals. Ignoring other criteria like the convenience of avoiding over parameterised models, it seems worst to erroneously assume some structure than do not assume any structure when this would be adequate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a contemporaneous-threshold multivariate smooth transition autoregressive (C-MSTAR) model in which the regime weights depend on the ex ante probabilities that latent regime-specific variables exceed certain threshold values. A key feature of the model is that the transition function depends on all the parameters of the model as well as on the data. Since the mixing weights are also a function of the regime-specific innovation covariance matrix, the model can account for contemporaneous regime-specific co-movements of the variables. The stability and distributional properties of the proposed model are discussed, as well as issues of estimation, testing and forecasting. The practical usefulness of the C-MSTAR model is illustrated by examining the relationship between US stock prices and interest rates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = Λf + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix Λ.Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = ΛΛT + ψ (2)where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as theloadings matrix Λ are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose to analyze shapes as “compositions” of distances in Aitchison geometry asan alternate and complementary tool to classical shape analysis, especially when sizeis non-informative.Shapes are typically described by the location of user-chosen landmarks. Howeverthe shape – considered as invariant under scaling, translation, mirroring and rotation– does not uniquely define the location of landmarks. A simple approach is to usedistances of landmarks instead of the locations of landmarks them self. Distances arepositive numbers defined up to joint scaling, a mathematical structure quite similar tocompositions. The shape fixes only ratios of distances. Perturbations correspond torelative changes of the size of subshapes and of aspect ratios. The power transformincreases the expression of the shape by increasing distance ratios. In analogy to thesubcompositional consistency, results should not depend too much on the choice ofdistances, because different subsets of the pairwise distances of landmarks uniquelydefine the shape.Various compositional analysis tools can be applied to sets of distances directly or afterminor modifications concerning the singularity of the covariance matrix and yield resultswith direct interpretations in terms of shape changes. The remaining problem isthat not all sets of distances correspond to a valid shape. Nevertheless interpolated orpredicted shapes can be backtransformated by multidimensional scaling (when all pairwisedistances are used) or free geodetic adjustment (when sufficiently many distancesare used)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of perturbation and power transformation operations permits the investigation of linear processes in the simplex as in a vectorial space. When the investigated geochemical processes can be constrained by the use of well-known starting point, the eigenvectors of the covariance matrix of a non-centred principalcomponent analysis allow to model compositional changes compared with a reference point.The results obtained for the chemistry of water collected in River Arno (central-northern Italy) have open new perspectives for considering relative changes of the analysed variables and to hypothesise the relative effect of different acting physical-chemical processes, thus posing the basis for a quantitative modelling

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a variation of the proof for weak approximations that issuitable for studying the densities of stochastic processes which areevaluations of the flow generated by a stochastic differential equation on a random variable that maybe anticipating. Our main assumption is that the process and the initial random variable have to be smooth in the Malliavin sense. Furthermore if the inverse of the Malliavin covariance matrix associated with the process under consideration is sufficiently integrable then approximations fordensities and distributions can also be achieved. We apply theseideas to the case of stochastic differential equations with boundaryconditions and the composition of two diffusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose new spanning tests that assess if the initial and additional assets share theeconomically meaningful cost and mean representing portfolios. We prove their asymptoticequivalence to existing tests under local alternatives. We also show that unlike two-step oriterated procedures, single-step methods such as continuously updated GMM yield numericallyidentical overidentifyng restrictions tests, so there is arguably a single spanning test.To prove these results, we extend optimal GMM inference to deal with singularities in thelong run second moment matrix of the influence functions. Finally, we test for spanningusing size and book-to-market sorted US stock portfolios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates what has caused output and inflation volatility to fall in the USusing a small scale structural model using Bayesian techniques and rolling samples. Thereare instabilities in the posterior of the parameters describing the private sector, the policyrule and the standard deviation of the shocks. Results are robust to the specification ofthe policy rule. Changes in the parameters describing the private sector are the largest,but those of the policy rule and the covariance matrix of the shocks explain the changes most.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of this paper is to estimate time-varying covariance matrices.Since the covariance matrix of financial returns is known to changethrough time and is an essential ingredient in risk measurement, portfolioselection, and tests of asset pricing models, this is a very importantproblem in practice. Our model of choice is the Diagonal-Vech version ofthe Multivariate GARCH(1,1) model. The problem is that the estimation ofthe general Diagonal-Vech model model is numerically infeasible indimensions higher than 5. The common approach is to estimate more restrictive models which are tractable but may not conform to the data. Our contributionis to propose an alternative estimation method that is numerically feasible,produces positive semi-definite conditional covariance matrices, and doesnot impose unrealistic a priori restrictions. We provide an empiricalapplication in the context of international stock markets, comparing thenew estimator to a number of existing ones.