37 resultados para Cosmologia Guarani
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Estudi realitzat a partir d’una estada al Physics Department de la New York University, United States, Estats Units, entre 2006 i 2008. Una de les observacions de més impacte en la cosmologia moderna ha estat la determinació empírica que l’Univers es troba actualment en una fase d’Expansió Accelerada (EA). Aquest fenòmen implica que o bé l’Univers està dominat per un nou sector de matèria/energia, o bé la Relativitat General deixa de tenir validesa a escales cosmològiques. La primera possibilitat comprèn els models d’Energia Fosca (EF), i el seu principal problema és que l’EF ha de tenir propietats tan especials que es fan difícils de justificar teòricament. La segona possibilitat requereix la construcció de teories consistents de Gravetat Modificada a Grans Distàncies (GMGD), que són una generalització dels models de gravetat massiva. L’interès fenomenològic per aquestes teories també va resorgir amb l’aparició dels primers exemples de models de GMGD, com ara el model de Dvali, Gabadadze i Porrati (DGP), que consisteix en un tipus de brana en una dimensió extra. Malauradament, però, aquest model no permet explicar de forma consistent l’EA de l’Univers. Un dels objectius d’aquest projecte ha estat establir la viabilitat interna i fenomenològica dels models de GMGD. Des del punt de vista fenomenològic, ens hem centrat en la questió més important a la pràctica: trobar signatures observacionals que permetin distingir els models de GMGD dels d’EF. A nivell més teòric, també hem investigat el significat de les inestabilitats del model DGP.L’altre gran objectiu que ens vam proposar va ser la construcció de noves teories de GMGD. En la segona part d’aquest projecte, hem elaborat i mostrat la consistència del model “DGP en Cascada”, que generalitza el model DGP a més dimensions extra, i representa el segon model consistent i invariant-Lorentz a l’espai pla conegut. L’existència d’altres models de GMGD més enllà de DGP és de gran interès atès que podria permetre obtenir l’EA de l’Univers de forma purament geomètrica.
Resumo:
Observations of the extraordinarily bright optical afterglow (OA) of GRB 991208 started 2.1 d after the event. The flux decay constant of the OA in the R-band is -2.30 +/- 0.07 up to 5 d, which is very likely due to the jet effect, and after that it is followed by a much steeper decay with constant -3.2 +/- 0.2, the fastest one ever seen in a GRB OA. A negative detection in several all-sky films taken simultaneously to the event implies either a previous additional break prior to 2 d after the occurrence of the GRB (as expected from the jet effect). The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two events. Once the afterglow emission vanished, contribution of a bright underlying SN is found, but the light curve is not sufficiently well sampled to rule out a dust echo explanation. Our determination of z = 0.706 indicates that GRB 991208 is at 3.7 Gpc, implying an isotropic energy release of 1.15 x 10E53 erg which may be relaxed by beaming by a factor > 100. Precise astrometry indicates that the GRB coincides within 0.2' with the host galaxy, thus given support to a massive star origin. The absolute magnitude is M_B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of 11.5 +/- 7.1 Mo/yr. The quasi-simultaneous broad-band photometric spectral energy distribution of the afterglow is determined 3.5 day after the burst (Dec 12.0) implying a cooling frequency below the optical band, i.e. supporting a jet model with p = -2.30 as the index of the power-law electron distribution.
Resumo:
Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.
Resumo:
We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.
Resumo:
An inflating brane world can be created from ``nothing'' together with its anti-de Sitter (AdS) bulk. The resulting space-time has compact spatial sections bounded by the brane. During inflation, the continuum of KK modes is separated from the massless zero mode by the gap m=(3/2)H, where H is the Hubble rate. We consider the analogue of the Nariai solution and argue that it describes the pair production of ``black cigars'' attached to the inflating brane. In the case when the size of the instantons is much larger than the AdS radius, the 5-dimensional action agrees with the 4-dimensional one. Hence, the 5D and 4D gravitational entropies are the same in this limit. We also consider thermal instantons with an AdS black hole in the bulk. These may be interpreted as describing the creation of a hot universe from nothing or the production of AdS black holes in the vicinity of a pre-existing inflating brane world. The Lorentzian evolution of the brane world after creation is briefly discussed. An additional ``integration constant'' in the Friedmann equation-accompanying a term which dilutes like radiation-describes the tidal force in the fifth direction and arises from the mass of a spherical object inside the bulk. In general, this could be a 5-dimensional black hole or a ``parallel'' brane world of negative tension concentrical with our brane-world. In the case of thermal solutions, and in the spirit of the AdS/CFT correspondence, one may attribute the additional term to thermal radiation in the boundary theory. Then, for temperatures well below the AdS scale, the entropy of this radiation agrees with the entropy of the black hole in the AdS bulk.
Resumo:
A generic prediction of inflation is that the thermalized region we inhabit is spatially infinite. Thus, it contains an infinite number of regions of the same size as our observable universe, which we shall denote as O regions. We argue that the number of possible histories which may take place inside of an O region, from the time of recombination up to the present time, is finite. Hence, there are an infinite number of O regions with identical histories up to the present, but which need not be identical in the future. Moreover, all histories which are not forbidden by conservation laws will occur in a finite fraction of all O regions. The ensemble of O regions is reminiscent of the ensemble of universes in the many-world picture of quantum mechanics. An important difference, however, is that other O regions are unquestionably real.